Equivalence between transfer-matrix and
observed-state feedback control
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Abstract: An observed-state feedback is built for a given multiple input—multiple output (MIMO)
control loop, where the controller is specified in transfer-matrix form. This contribution solves for
the first time, for MIMO systems, the classical problem of finding a feedback gain and an observer
gain such that the observed-state feedback control loop has the same sensitivity as that provided by

a one-degree-of-freedom classical control loop.

1 Introduction

One of the pillars of modern linear control theory is the
observed-state feedback of a system described in state-
space form. This strategy has been thoroughly studied
since state-space representation can provide infor-
mation on the system properties which is not present in the
transfer-matrix description. One of the advantages of the
control design based on state-space techniques lies on
the decoupling of some of the major control issues, such
as regulation, reference tracking, state estimation and dis-
turbance rejection. In particular, observed-state feedback
simplifies the control synthesis via the separation principle.

On the other hand, classical control theory, with its
input—output description, is closer to control engineering
and has some advantages due to its treatment of control
loop sensitivity and robustness against modelling errors.

However, since modern and classic approaches can be
used to solve the same linear control problem, an under-
standing of their connection should provide useful insight.
In other words, unification of both approaches to control
contributes to a more complete vision of design and its spe-
cifications and, among other benefits, can help to under-
stand the degrees-of-freedom available to the control
designer. In particular, since design is usually an iterative
process, a procedure to establish an explicit equivalence
between classical and modern approaches to control may
be useful to study and to improve the time-domain and
frequency-domain properties of a particular controller
design, by taking advantage of both alternatives.

It is important to realise that, although both theories can
be used to solve the same control problems, it is not clear
that they yield the same solutions (in an input—output
sense). This is because it is not known whether the control-
ler structures given by classical control and observed-state
control theories provide exactly the same degrees-of-
freedom.

Equivalence between classical and modern control strat-
egies has been only recently studied by Yuz and Salgado
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[1]. They proved that, for scalar plants, every proper con-
troller is equivalent to an observed-state feedback control-
ler. To the best knowledge of the authors, the problem has
not yet been solved for the multivariable case. Moreover,
and as discussed in the following section of the paper, the
approach in [1] cannot be extended to multivariable
plants. This article advances the solution to the equivalence
problem for multiple input—multiple output (MIMO)
systems.

This paper contributes to the unification of classical and
modern control theories in a linear multivariable frame-
work. Here, we consider a multivariable plant under
one-degree-of-freedom feedback control, and the same
plant under observed-state feedback control. The problem
we deal with is: given the first control architecture, with a
controller in transfer-matrix form, find the feedback gain
and the observer gain, for the second architecture, so that
both control loops exhibit the same sensitivity transfer-
matrix. In this paper, we solve the problem for a square
plant with a strictly proper controller of any order.

2 The equivalence problem
2.1 Problem statement

Consider a plant having a minimal realisation given by

x(f) = Ax(1) + Bu(f)
y(@) = Cx(t) (1)

where 4 € R™", B € R™", C € RP*"; x(t) € R" is the
state of the system, u(¢) € R™ is the input and y(¢r) € R’
is the output. In the sequel we assume that m = p.

Assume that the plant should follow a given reference
r(t) € R? and that the chosen architecture is the feedback
of the observed-state. The observer equation and the feed-
back control law are given by

£(6) = AR() + Bu(t) + J(y(t) — C#(1))
= (A — JOX(t) + Bu(f) + Jy(?)
u(t) = —K£(f) + (t) 2)

where /(1) € R" is a filtered reference signal, #(¢) € R" is
the observer state and J € R"*” is the observer gain.
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Then, it can be shown that (see, e.g. [2]):
UGs)=[T+K(sI—A+JC) 'B]™!
x [-K(I —A +JC) ' JY(s) +R(s)]  (3)

If the filtered reference satisfies

A-JC J

R(s)=K(sI — A +JC)1JR(S):[ K 0}R(s) 4)

where the notation A B stands for C(sI — A) 'B+ D,
then ¢ D

U(s) = C(s)(R(s) — Y (5)) )

where
C(s)=K(sI —A+JC+BK)™'J (6)

with U(s) = L{u(®)}, R(s) = L{r(?)}, R(s) = L{r(f)} and
Y(s) = L{y(0)}.

The above equations show that given the plant state
model (4, B, C, 0), the feedback gain K, and the full-
order observer gain J, there is always an equivalent classical
controller, which is strictly proper and having a degree
equal to the plant degree.

In this paper, we investigate the inverse equivalence
problem, that is, given C(s), strictly proper and having the
same degree as the plant, find K and J. We will later relax
the degree requirement.

In the sequel, to make the notion of equivalence more
precise, we will say that two systems are externally equiv-
alent if their transfer matrices coincide, and two systems
will be said to be internally equivalent if their state-space
realisations can be related by a similarity transformation.

2.2 Equivalence for a scalar loop

Yuz and Salgado [1] proved, for the single input—single
output (SISO) case, that every classical, internally stable,
control loop is externally equivalent to a observed-state
feedback control loop. That result includes a procedure to
find K and J, given the controller transfer function C(s)
having the same degree to that of the plant.

The key concept underlying the results in [1] is the fact
that the controller C(s) uniquely determines (modulo
stable cancellations) the closed-loop characteristic
polynomial A.(s), and that A(s) = det(s] — A + BK)
det(sI — A + JC). Therefore although there might be an
infinite number of pairs (J, K) leading to the same A(s),
there is a unique SISO controller C(s).

The above key idea does not hold in the MIMO case,
since the closed-loop characteristic polynomial Ag(s) is
not uniquely tied to a given MIMO controller. For more
details, see chapter 7 of [9].

3 Equivalence based on a Riccati equation
3.1 Approach description

According to Luenberger, almost any system can be seen as
an observer of another one (see Note at the end of this
section, and [4—6]). This idea may be used to consider a
transfer-matrix controller of same order as the plant as a
combination of a state-feedback and a full-order observer.
To this end, consider again system (1) and a controller
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with realisation

xo(1) = Aex () + B[r(t) — y(1)]

u(t) = Cex (1) (7
where x.(f) € R" is the controller state, A. & R"™",
B. € R”? and C, € R™".

The idea of Luenberger lies on the fact that, under a suit-
able state transformation, the controller state is an esti-
mation of the actual plant state. To see that, we need to
modify (7) so that the controller state x.(f) depends only
on u(t) and y(¢), since an observer is driven by the input
and the output of the observed system.

To include the plant input u(¢) into the controller state
equation, we add and subtract I'u(¢) (where I' € R™"
remains to be determined) in the first equation of (7), so
we obtain

xo(t) = (Ac = I'Co)xc(t) + I'u(t) + Ber(1) — Bey(t)
u(t) = Cex(1) ®)

To simplify these expressions, we define
A.=A.-TC. )

Then, to eliminate r(¢) from (8), we use the linearity of
the controller to express its state as a sum of two vectors,
x,(t) and xz(¢), where x,(¢) depends only on u(¢) and y(¢),
and xz(¢) depends exclusively on r(¢). In this way, we obtain

Xo(1) = A, x,(t) + Tu(t) — B.y(t)
Xr(t) = A xp(t) + B r(t)
ll(f) = Cc xo(t) + Cc xR(t) (10)

Therefore x,(f) may be interpreted as the state of an
observer, and xz(?) may be considered as the state of a refer-
ence prefilter. To highlight the relationship between (10)
and the equations of a state-space controller, we define
#(t) = C.xg(?), so (10) may be written as

xo(t) = Acxo(1) + Tu(t) — Bey(1)

xXp(t) = Acxr(?) + Bor(1) (11)
F(t) = Cexg(t)
u(t) = Cox,(t) + (1)

Suppose, then, that x,(t) = Tx(t), where T € R"™" is a
suitable (non-singular) transformation matrix. Using (1)
and (11), we have

Tx(t) = TAx(t) + TBu(?)

Tx(f) = A Tx(t) — B.Cx(t) + I'u(?) (12)
Since the above equations hold for every ¢ and every u(¢)
and x(¢), we have that

I'=TB
TA —A.T = -B.C (13)

Next, from (9) it follows that
A.=A,—TBC, (14)
Introducing (14) into (13), we get
TA — (A, —TBC.)T = —-B.C (15)
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This means that the transformation matrix 7 must be an
invertible solution of the Riccati equation

TA —A.T + TBC.T = —B.C (16)

The previous arguments prove that an internal equi-
valence implies the existence of an invertible solution of
(16). Now we prove the converse, that is, that every
invertible solution of (16) gives an internal equivalence.
To do this, let T be an invertible solution of (16), so we
can define the transformed state

To(t) = T~ 'x,(0)
(1) = T~ 'xx(0) (17
Under this transformation, the controller is given by
¥,(t) = T"'(A. — TBC.)T%,(t)
+Bu(t) — T"'B.y(1)
¥r(f) =T (A, — TBC)T%x(t) + T~'B.r(1)
F(t) = C.Txp(t)
u(t) = C.ITx,(t) +1(¢) (18)
Therefore it is true that
x(t) — X,(t) = Ax(t) — T~'A . T%,(t) + BC.Tx,(1)
+ T 'B.Cx()
=[A+ T 'B.Clx(1)
+[BC.T — T~'ATI%,(1) (19)
However, from (16) it follows that
TBC.T —A.T=-B.C—-TA
— BC.T — T~ 'A.T
=-T'B.C—-A (20)
o)
x(t) — X,(t) =[A + T7'B.Cl(x(t) — %,(?)) (21)

This implies that X,(¢) estimates the state of system (1).
Henceforth, using (20), (18) may be written as

Xo(t) = (A +T7'B.C)%,(1) + Bu(t) — T~'B.y(1)
Xr() = (A + T 'B.O)xxr(t) + T~ 'B.r(t)

(1) = C.Txx(f)

u(f) = C.T%,(1) + (1)
Rearranging the terms, we obtain

%,(1) = A%o(1) + Bu(1) — T~ 'B.[y(1) — C%,(1)]

(22)

¥r(t) = (A + T7'B.C)ir(t) + T™'B.r(?)
(1) = C.Txr(t)
u(t) = C.Tx,(t) +(t) (23)

Comparing the above expressions with those of a state-
space controller

Xo(1) = A%, (1) + Bu(t) + J[y(1) — CZ,(1)]
xr(t) = (A — JO)®R(1) + Jr(?)
7(t) = Kip(0)
u(t) = —Kx,(t) + (t) (24)

it follows that, after changing the sign of the reference pre-
filter state, xz(¢), (7) can be seen as a state-space controller
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with gain matrices

J - _T_IBL'
K=—-CT (25)

We have thus shown that the problem of existence and
uniqueness of an internal equivalence between a strictly
proper multivariable controller and a state-space controller
given by a full-order observer and a state-feedback is analo-
gous to the existence and uniqueness of invertible solutions
of the Riccati equation (16).

In short, the resulting procedure to obtain matrices J and
K from (7) is as follows:

Procedure.

1. Describe the plant and controller in state-space form,
according to (1) and (7).

2. Solve Riccati equation (16).

3. The controller can be described as in (24), where J and K
are given by (25).

Note. The term ‘almost’ used by Luenberger when he said
that ‘almost’ any system can be seen as an observer of
another one comes from the fact that Luenberger [4]
showed this for the case in which both systems have no
common eigenvalues. If this is not so, it may happen that
the first system cannot be seen as an observer of the
second one, or that there may exist infinite ways to establish
this relationship between the systems. The condition of
Luenberger establishes the existence and uniqueness of sol-
utions for the second equation of (13) (in 7) if 4 and A4 are
independent of T; however, 4. does depend on 7, so his
condition is not applicable here.

3.2 Solving the Riccati equation

Theorem 1 in the Appendix says that the invertible solutions
of 7(1 6) have the form 7= GF ', where columns of matrix
[F G"]" are generalised right eigenvectors of the pseudo-
Hamiltonian matrix.

A BC.
= |:—BCC A } (26)

[This matrix is built from the asymmetric Riccati equation
in the same way as the Hamiltonian matrix of a symmetric
Riccati equation, although strictly speaking H is not a
Hamiltonian matrix, since its eigenvalues do not satisfy
any kind of symmetry.]

Generalised right eigenvectors of H chosen to create
[FT  G"])" must satisfy the three conditions of Theorem 1
in the Appendix, and G must be invertible.

The discussion above shows that the problem of finding
an internal equivalence between a given controller and the
combination of an observer and a state-feedback, can be
reduced to the problem of finding » right generalised
eigenvectors of H satisfying certain properties. Using an
exhaustive search, we would have to try, in the worst case
(for a plant with distinct real eigenvalues)

(2}1) _ (@2n)! @7

n)  (n)

possibilities.

For n = 5, for example, 252 cases should be analysed. To
reduce the number of computations, necessary and sufficient
conditions on the existence of real invertible solutions of
(16) would be welcome.
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Note. In general it is unnecessary to know the generalised
eigenvectors of H to solve Riccati equation (16), because
it is enough to choose a set of linearly independent
column vectors whose span coincides with the column
space of [FT  G"]" [7].

3.3 Interpretation

By combining the equations defining the plant, (1), and the
controller, (7), we obtain the closed-loop equations

x(1) = Ax(1) + BCex(1)

xc(t) = Acxc(t) - Bccx(t) + Bcr(t)

y(0) = Cx(1) (28)

which may be written in matrix form as

07 [ A BC[x0 0
[xc(o] - [—Bcc A, ch(t)} " [Bjr(t)

¥ =[cC 0][ X ] (29)

x.()

where we see that the closed-loop state matrix is precisely
the pseudo-Hamiltonian matrix (26).
By applying the invertible state transformation matrix

I 0
o= 5] (30)

together with expressions (16), (20) and (25), one observes
that the closed-loop can be described as

(0 A—BK BK 7[x() 0

o) Lo+ [

(1) 0 A-JC]||lx() J
x'(1)

x;(t)]

Therefore matrix T allows to transform the closed-loop
state to that of a combination of a full-order observer and
a state-feedback.

Also, from (25) we know that A — BK = A + BC.T, so
from Theorem 1 we conclude that o(4 — BK) is the set of
eigenvalues of H associated with the generalised right
eigenvectors chosen to build 7. [o(A4) is the spectrum of
A, i.e. the set of its eigenvalues.]

¥ =[C 0][ 1)

Note 1. An alternative way to establish the internal equival-
ence between the control structures, also leading to (16), is
to observe that what we need is to express the controller,
given by (7), in the form

C(s) = [A —Jf{—BK ﬂ

=K(sI —A +JC +BK)"'J (32)

using an invertible state transformation matrix T € R"*".
This matrix must satisfy the equations

T-'A.T=A—-JC —BK
T'B.=J
C.T=K (33)

By replacing the second and the third equations into the
first one, and pre-multiplying by T, we obtain the Riccati
equation

A.T = TA — B.C — TBC.T (34)
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which corresponds essentially to (16), after changing T
for —T. This sign discrepancy disappears if we change
x,(t) for —x,(¢) in (10).

Note 2. The results derived above are valid for continuous-
time as well as for discrete-time systems, because state rep-
resentations for both kinds of systems have essentially the
same structure. Henceforth, the Riccati equation (16) is
equally valid to represent discrete-time controllers as a
combination of a state-feedback and a full-order observer.
This is neither intuitive nor trivial, because (16) seems to
be an extension of what is known as a continuous-time
(symmetric) Riccati equation. Thus, by analogy, we may
expect to find that for discrete-time systems we would
need an extension of a discrete-time (symmetric) Riccati
equation. However, our interpretation to (16) is very differ-
ent to that usually given to continuous-time symmetric
Riccati equations (see, for instance, [3]), so the analogy
between symmetric and asymmetric Riccati equations
does not apply here.

Note 3. The fact that the eigenvalues associated with the
generalised right eigenvectors used to build T are the eigen-
values of 4 — BK seems to violate the existing symmetry
between the expressions of a state-feedback and a full-
order observer. However, such asymmetry comes from
using generalised ‘right’ eigenvectors. It can be shown [8]
that if we use generalised left eigenvectors of H to build
solutions of the Riccati equation (16), the eigenvalues
associated with these eigenvectors are those of 4 — JC.

Example 1. Equivalence with a Riccati equation: Consider
a plant whose state-variable representation has matrices

-1 -2 12 10
A IR F

This plant has poles at {—1, 1}. If we use a state-feedback

matrix given by
| -2/3 4
k= [ 4/3 —3:| (36)

and an observer with gain

6 —2
J:[_7 7} (37)

Then, we see that the controller transfer-matrix is

_32(s+7.208)  29.33(s + 6.864)
Cs) = s+1D)(Es+7) s+ 1D)(s+7) (38)
VT 20(s+7.460)  —23.67(s + 6.662)

s+1D)(s+7) s+ 1D)(s+7)

For this transfer-matrix, an alternative state representation is

~7 0 2.5 L5
0 —11 —7.826 7.826
Cis) = (39)
—0.6667  3.876 0 0
1333 —3.280 0 0

For this realisation, Riccati equation (16) has the form
-1 =2 -7 0 2 —2.683
T — T+T T
0 1 0 —11 0 4472

-4 -15 40
_[ 0 —7.826] (40)
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The pseudo-Hamiltonian matrix associated with this
equation is

-1 =2 2 —2.683
0 1 0 4472
H= —4 -15 =7 0 “1)

0 —7.826 0 —11

whose eigenvalues are A; = —3, A, = —4, A3 = —5 and
A4 = — 6. Associated right eigenvectors are respectively
[ —1.4177 0
0 3.5
Vi = 5 Va2 =
1.417 —-1.75
L O | | —3.913
[ 03757 [ 0.6667
0 -2.5 42)
vy = ; vy =
T 075 ! 1.083
L 0 L 3.913

Equation (40) has multiple solutions, but each one of
them can be uniquely characterised by a two-element set
S Co(H).

If we choose S = {—3, —4}, which is consistent with the
initial selection of K matrix in (36), the solution of equation
(40) is

-1 —05
T:[ 0 —1.118} (43)

so from (25) we obtain

6 —27. _[—0.6667 4
J:[—7 7}’ K‘[ 1.333 —3} “4)

These matrices coincide with the observer and state-feed-
back gain matrices ((37) and (36), respectively).

For § = {—3, —5} there is no solution, because the upper
and lower second-order submatrices of [v; v3] are singu-
lar. In all, there are five equivalences for this problem [7].

As we can see from this last example, and unlike what
happens with SISO loops, not every choice of S gives an
internal equivalence in MIMO loops; there are now cases
where the number of degrees-of-freedom available for
equivalence is less than expected at first sight.

3.4 Necessary condition for equivalence

A necessary condition for a given matrix 7= GF ' to be a
real invertible solution of (16) is given by Theorem 2. To
state this condition, it is convenient to define S as the set
of eigenvalues associated with generalised right eigenvec-
tors chosen to form [F’ G']7, and to define S as the
remaining eigenvalues of H (even if some of them coincide
with those of S). Then, for T to be a real invertible solution
of (16) it is necessary that all uncontrollable eigenvalues of
pairs (4, BC.) and (4., —B.C) belong to S, and that all
unobservable eigenvalues of pairs (4, —B.C) and
(4., BC,) belong to S. [According to the PBH tests
(see, e.g. [9]), the pair (4, B) ((4, C)) is controllable
(observable) if and only if there is no vector v such that
viA =" (4v=Av) and v/ B=0 (Cv=0) for some
A€ C. A X for which there is such a vector is called
an uncontrollable (unobservable) eigenvalue of (4, B)
((4, C)); the remaining eigenvalues of 4 are controllable
(observable).]
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The previous condition may be simplified by using
Theorem 3, and assuming that columns of B and B, are lin-
early independent, as also are rows of C and C,, and so the
condition may be stated as follows: For T to be a real inver-
tible solution of (16) it is necessary that all uncontrollable
eigenvalues of pairs (4, B) and (4., B.) belong to S, and
that all unobservable eigenvalues of pairs (4, C) and
(4., C,) belong to S. This means that all uncontrollable
eigenvalues of the plant and the controller must be in
S, and that all their unobservable eigenvalues must belong
to S.

3.4.1 Infinite number of solutions of a Riccati
equation: As already stated in Section 3.2, the number
of solutions of a Riccati equation is finite when its
pseudo-Hamiltonian matrix H has distinct eigenvalues.
However, if H is derogatory (see, e.g. [8]), that is, if it
has two or more linearly independent eigenvectors associ-
ated with the same eigenvalue, then the Riccati equation
may have an infinite number of solutions (although not
necessarily invertible ones). To better understand this prop-
erty, assume, for instance, that H has at least two linearly
independent eigenvectors, say v; and v,, associated with
the same eigenvalue in A;. Hence, if we choose the set S
so that it includes exactly one of these eigenvalues, then
there exists an infinite number of possible eigenvectors
related to A; which may be used to obtain a solution to
the Riccati equation, because every linear combination of
v, and v, is an eigenvector of H associated with A;; each
one of such eigenvectors may give a different solution, so
the Riccati equation may have an infinite number of
solutions.

Even if the Riccati equation (16) may have, in principle,
an infinite number of solutions, it is not necessarily true that
there exists an infinite number of matrices J and K leading
to the same controller C(s). For instance, in the case of a
scalar loop, as H is the closed-loop state matrix, the fact
of it being derogatory implies that the loop has at least
one uncontrollable and unobservable mode [7]; this mode
cannot come from the plant (since it has been assumed
that it is given by a minimal realisation), so it must come
from the controller or from pole-zero cancellations
between the controller and the plant. Also, according to
Section 3.2, a strictly proper scalar controller given by a
transfer function is always externally equivalent to the com-
bination of a state-feedback and a full-order observer, and
there is a bijective relation between the gain matrices of
these systems and the closed-loop eigenvalues (split into
two sets of the same size). Hence, if the controller is intern-
ally equivalent to one of those combinations, matrices J and
K are unique.

The reasoning above does not hold in the MIMO case,
since the fact that the closed-loop state matrix is deroga-
tory does not imply that the loop has uncontrollable
and/or unobservable modes (see, for instance, [9]), and
the closed-loop eigenvalues do not determine uniquely the
gain matrices of the state-feedback and the observer.
However, to the best of our knowledge, there are no cases
where an infinite number of matrices J and K leads to the
equivalence between a classical controller and a state-
space controller.

The analysis of the case when a loop yields a Riccati
equation with infinite invertible solutions, can be found
in [7].

Sometimes a Riccati equation may have infinite
solutions, but none of them are invertible; see, for instance,
[10].
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3.5 Cancellations between the controller and
the plant

The theory developed in the previous sections is still valid
when there are cancellations between poles and zeros of
the plant with zeros and poles of the controller, respectively.
For illustrative examples see [7].

4 Controllers of lower degree than the plant

In this section, we extend the method developed previously,
to establish the external equivalence between a strictly
proper controller of lower order than the plant and the com-
bination of a state-feedback and a full-order observer. To do
this, we use the Kalman decomposition theorem to intro-
duce uncontrollable and/or unobservable modes into the
controller. In this way we build a controller whose realis-
ation has the same order as the plant, so we can proceed
as before.

Consider a controller given by a transfer-matrix, of lower
order than the plant. It is possible to represent this controller
by (7), with A, € R™*", B, € R"*?, C, & R"" and
n. < n.

The method previously developed is valid only when
n. = n. Hence, it is necessary to extend the controller
model to an nth order realisation by adding stable
uncontrollable and/or unobservable subsystems into the
controller. This can be done with the Kalman decompo-
sition theorem, leading (7) to

x.(t) A, 0 A; 0
Xeo(t) | | A2 Acs Az Ang
Xz,0(1) 0 0 A:, 0
xz.5(1) 0 0 A4z Az
x(1) B,
xeo O 1 Bet o — yioy
xz,0(1) 0
xz5(1) 0
x.(1)
X 5(t)
u(t):[Cc 0 C:, 0] %200 (45)
xz5(1)

so [xl(t) xlst) xl,(t) xIsit)]" € R". According to
this theorem, this nth order controller has the same trans-
fer-matrix as (7), so we can apply the techniques of the pre-
vious section. However, it is convenient to mention three
aspects of this development:

First, the selection of matrices in (45) (apart from those
belonging to (7)) is constrained by the conditions given in
Section 3.4, according to which the uncontrollable eigen-
values of the controller (i.e. the eigenvalues of A4, and
A:;) must belong to S, and its unobservable eigenvalues
(i.e. the eigenvalues of 4.; and 4. ;) must belong to S. If
the eigenvalues of A4.; are distinct between themselves
and with respect to the rest of the controller and the original
closed-loop state matrix, H, (given by the plant and the
original controller), then they cannot belong simultaneously
to S and S, since

ocH)=SUS
=oH,)U0o@:.5)Uo@z,)Uo(Az;) (46)
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but only 4. ; has these eigenvalues with multiplicity 1. This
means that there is no internal equivalence for a controller
with a matrix 4. ; whose eigenvalues are distinct between
themselves and with respect to the rest of the controller
and H,. [This condition is equivalent to the proposition
that if the eigenvalues of A:, are simple, there are no
internal equivalences for the resulting controller.] Hence,
it is convenient to restrict realisation (45) to

X‘c(l‘) Ac 0 A1,3 xc(t)
Xeo(t) | = | Ao1 Acs Axz || xc5(D)
Xz0(t) 0 0 Az, || xz0()
B,
+ | Beo |(r() —y(0)
0
xc(t)
u)=[C. 0 Cz,]| xc5(0) (47)
xZ',o(t)

Second, it is important to note that even if it is mathemat-
ically feasible to consider unstable matrices A.;, Az, or
A5, this is not advisable from a control point of view,
since they give an internally unstable closed-loop (see,
e.g. [2]), whose internal signals may be unbounded.

Third, even after satisfying conditions of Section 3.4, the
selection of matrices of (47) is not unique. This can give rise
to many external equivalences of the original transfer-
matrix controller. This is shown in the next example.

Example 2. Controller of lower order than the plant:
Consider a plant given by

Go(s)=
2 —0.5
(s+1)(s+2) s+2
0.5 6
s+1 (s+2)(s+3)
[ -1 o 0o 0 |2200 0 ]
0 -2 0 0 2.236  0.2608
B 0 0 -3 0 0 5
0 0 0 -2 0 —4.59
0.8729 —0.8944 0 0.0581 | 0 0
| 0.2182 0 —-12 —-1.307 |0 0 l
(48)
and a controller given by
r0.192
—_— 0
C(s) =
0.352
0
s
0 0 1 0
0 0 0 1
= (49)
0.192 0 0 0
| 0 0.352 0 0
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which assigns the closed-loop poles at {—3.430; —2.154;
—0.8793 + j0.2020; —0.3285 + j0.2092}.

To apply the previous technique it is necessary to extend
the controller model (49) to one of order 4.

If an observable subsystem of order 2 is included in the
controller, with eigenvalues at —4 and —35, this yields, for
instance, to

000 0 0 10
, 0 0 0 0 1
ORI PYCES I LOR)
00 0 -5 0 1
0192 0 0 0
“0=, 0352 0 o]xcm (50)

For this controller, the eigenvalues of the associated
pseudo-Hamiltonian matrix correspond to the closed-loop
poles plus the unobservable subsystem eigenvalues incor-
porated to the controller; that is

o(H) = {-3.430, —2.154, —0.8793 + ;0.2020, —0.3285
+ j0.2092, —4, -5} (51)
According to the necessary existence conditions, the
unobservable controller eigenvalues, —4 and —35, must
belong to S (i.e. they cannot belong to S). Then, by choosing
S = {-3.430, —2.154, —0.3285 + j0.2092} (52)

matrices J and K are given by

1277  0.6050
—3.044  0.6286
T=1 _02011 —3.161
02532 2.134
o [04294 01252 0.03990 0.1440} )
| 0.09440 —0.02210 02137  0.4613

The combination of a state-feedback and a full-order
observer, based on matrices J and K of (53), has a matrix
transfer which coincides with that of the original controller
(49).

If, instead of (52), we choose

S = {—0.8793 + j0.2020, —0.3285 + j0.2092}  (54)

then
- 3.881 0.5261
03252 0.1529
=1 _006572  0.7090
0.5790 —3.206
L [01463  —L114 0.0502 —0.01801]
10.03329 —0.02168 —0.9806 —0.3223

(55)
The last alternative consists of choosing

S ={-3.430, —2.154, —0.8793 + ;0.2020} (56)
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to obtain

m3.534  —0.1652

~5.058 02108
T=1 4509 _3.974

| —6.674  3.157

F—0.1510 0.09003 —0.005384 —0.02069
E=1_0400 005130 01680 02975 }

(57)

The transfer functions for combinations (55) and (57)
coincide with that of the original controller (within a
numerical precision of ten significant digits for the transfer
function coefficients).

If the necessary existence conditions are ignored, for
instance, by choosing

S = {—4,—5,-3.430, —2.154} (58)

the Riccati equation has no solution. Hence, there are no
matrices J and K associated to this choice of S.

Assume that a second-order stable unobservable and
uncontrollable subsystem is incorporated to the original
controller, with eigenvalues at —4 and —5. In this case,
one possible solution can be built using the augmented con-
troller

00 0 0 10

, 0 0 0 01

x.() = 0 0 — 0 x. (1) + 0 0 (r() —y®)
000 0 -5 00
[0.192 0 00

"(t):_o 0352 0 o}w) (59)

The pseudo-Hamiltonian matrix in this case has the same
spectrum than before. Nevertheless, the resulting Riccati
equation has no solution for any of the three possible
choices of §

§ = {-3.430, —2.154, —0.3285 + ;j0.2092}
§ ={-0.8793 + ;0.2020, —0.3285 + ;0.2092}
§ ={-3.430, —2.154, —0.8793 + ;0.2020} (60)

Note. The previous treatment can also be applied to consider
controllers of higher order than the plant order. To this end,
we simply add uncontrollable or unobservable poles to the
plant, to equate the controller order, and we then proceed
as before.

5 Conclusions

The problem of the internal equivalence has been studied
using the idea, due to Luenberger, that almost any system
may be seen as an observer of another. This means that,
in principle, it is possible to transform the state of the con-
troller to be an estimation of the plant state. With this idea,
we have found that the equivalence problem may be solved
constructively in terms of the invertible solutions of an
asymmetric Riccati equation, each one of which determines
uniquely a state-feedback and a full-order observer whose
combination is internally equivalent to the given controller.
This is the main contribution of this paper.

We have analysed the solution of the asymmetric Riccati
equation related to the problem, and we have noted that in
many cases the solutions of the equation are defined by a
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combination of n out of the 2n eigenvalues of the
pseudo-Hamiltonian matrix of the equation, which
corresponds to the closed-loop state matrix. In other
words, the number of degrees-of-freedom related to the
equivalence problem in the MIMO case is similar to those
of the SISO case. However, as we have mentioned in the
paragraph following Example 1, there are MIMO -cases
where the number of degrees-of-freedom is actually less
than what is expected for SISO cases at first sight. It is
possible, in principle, that this number may be infinite,
but to the knowledge of the authors there are no cases
where this happens.

In order to know whether there exists at least one internal
equivalence for a given classical loop, it helps to develop
some conditions on the existence of invertible solutions of
an asymmetric Riccati equation. One necessary condition
for this has been presented in this section, but sufficient con-
ditions have yet to be found, which is a consequence of the
lack of results on asymmetric Riccati equation in the
specialised literature.

Finally, the method has been extended to the case
when the controller has lower order than the plant. To do
this, uncontrollable and/or unobservable stable modes
must be added to the controller model, so that its order
is equal to that of the plant. Using the necessary condition
for equivalence, it has been shown that, to obtain an
equivalence, the controller cannot have modes which are,
both uncontrollable and unobservable. A simple extension
of this idea solves the equivalence problem for controllers
of higher order than the plant order.

Future research could investigate necessary and sufficient
conditions for the equivalence to exist. Another interesting
topic relates to biproper controllers and their observed-
state-feedback equivalences. Preliminary results show that
this problem can be solved using singular perturbation
theory [11].
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8 Appendix A. Some theorems

Theorem 1 (Solutions of a generalised Riccati equation):
Consider the generalised Riccati equation

TA-DT +TBT -C=0 (61)

where 4, B, C, D € R™", and define the pseudo-
Hamiltonian matrix

A B
nefs 8] @

whose 2n eigenvalues are A; (i = 1, ..., 2n). By joining n
generalised right eigenvectors of H as column vectors,
create matrix [FT GT]T, where F=[f11 - fia, "= fix -+~
Jraland G=1[g 1 - g4 " &1 &ka,l> Such that:

1. F is invertible.

2. Eigenvalues associated with chosen generalised right
eigenvectors come in complex conjugates, and there is an
equal number of generalised right eigenvectors for each
eigenvalue and its conjugate.

3. Chosen generalised right eigenvectors which belong to
the same eigenvalue of H are a Jordan chain.

Then T = GF ' is a real solution of the Riccati equation
(61), and for this solution it holds that 4 4+ BT has the
eigenvalues {A;} associated with the chosen generalised
right eigenvectors. Conversely, every real solution of (61)
may be written as T = GF ", for some choice of general-
ised right eigenvectors of H satisfying the three previous
properties.

Proof: This is a simple extension of Exercise 3.4-10 of [3].
O

Theorem 2 (Existence of invertible solutions of a Riccati
equation): Consider matrix T= GF ' (where F and G
are defined as in Theorem 1). Let S be the set of eigenvalues
associated with the generalised right eigenvectors of matrix
H (defined in (62)) which conform the columns of [F” G']7,
and let S be the set of the remaining eigenvalues of H (even
if some of them are also in S). A necessary condition for 7 to
be an invertible solution of the Riccati equation (61) is that
S must contain all uncontrollable eigenvalues of pairs (4, B)
and (D, C), and that S must contain all unobservable eigen-
values of pairs (4, C) and (D, B).

Proof: This is a variant of Theorem 2 of [12]. Suppose that
T is a solution of (61). Consider then the invertible trans-

formation matrix
I 0
U= |:T I:| (63)

From the inverse of a block triangular matrix (see
Exercise A.22 of [3]), we have that, after some algebra

(64)

iy _[A+BT B
UHU_[ 0 D—TB:|

But o(U 'HU) = o(H), so we deduce that o(H)=
0(A+BT) U o(D — TB) (see Theorem 5 of [7]). Also,
from Theorem 1 we know that o(4+BT)=S, so
o(D—TB)=3S.

Suppose that A is an uncontrollable eigenvalue of pair
(A, B). This means, by the PBH test, that there exists a
left eigenvector v € C” of A4, associated with an eigenvalue
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A of 4, such that v/B = 0. Therefore
vI(A +BT) =v'A +v'BT = M7 (65)

soA € o(Ad+BT)=>S.

Suppose now that A is an unobservable eigenvalue of pair
(D, B). This means, by the PBH test, that there exists a right
eigenvector v € C" of D, associated with an eigenvalue A of
D, such that By = 0. Therefore

(D—TB)y =Dv —TBy = \v (66)

soA € o(D—TB)=3.
Consider now another invertible transformation matrix

0 I
ve[o 1] @)
which satisfies
_1 _|D C
VT'HV = B A:| (63)

Therefore ¥ ~' HV is the pseudo-Hamiltonian matrix of
the Riccati equation

TD —AT +TCT —D =0 (69)

and if 7 is an invertible solution of (61), then (61) may be
pre-multiplied and post-multiplied by 7', yielding

AT ' —T7'D+B-T7'cT ' =0 (70)
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so T = T~ 'is a solution of (69). This means that for every
invertible solution of (61) there is an invertible solution of
(69). Also, from Theorem 1 we have that if T is a_solution
of (61) formed from S= (4 +BT), then T=T 'is a
solution of (69) formed from set

S=oD+CT)=o(T[T'D+T'CT™"))
=o(T[A+BTIT ) =S (71)

By applying the same previous arguments on this matrix,
we deduce that S contains all uncontrollable eigenvalues of
pair (D, C), and that S contains all unobservable eigenvalues
of pair (4, C). U

Theorem 3 (Controllability and observability relation-
ships): Consider matrices 4 € R"™", B™" C & R°*",
Ue R™, and V € R™”, where U has linearly indepen-
dent rows and V has linearly independent columns. Then
the pair (A4, B) is controllable if and only if so is the pair
(4, BU). Similarly, the pair (4, C) is observable if and
only if so is the pair (4, VC).

Proof: See Theorem 16 of [7]. O
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