
Artificial Intelligence in Medicine (2005) 35, 87—105
http://www.intl.elsevierhealth.com/journals/aiim
Fuzzy attributes of a DNA complex: Development
of a fuzzy inference engine for codon-‘‘junk’’
codon delineation

Tomás V. Arredondo a, Perambur S. Neelakanta b,*, Dolores De Groff b
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Objective: The present study is concerned with the need that exists in bioinformatics
to identify and delineate overlapping codon and noncodon structures in a deoxyr-
ibonucleic acid (DNA) complex so as to ascertain the boundary of separation between
them. Codons refer to those parts in a DNA complex encoded towards forming a
desired set of proteins. Also coexist in the DNA structure noncodons (or ‘‘junk’’
codons), whose functions are not so well defined. Such codon and noncodon parts (at
least over some sections of a DNA chain) may conform to diffused (overlapping) states
exhibiting sharpless boundaries with indistinctive statistics of occurrence of their
constituents. Such overlapping mix of codon and noncodon entities constitutes a
(fuzzy) universe with information constituent having a fuzzy structure, which can only
be identified in descriptive norms with characteristic membership of belongingness to
certain attributes. Hence, this work is directed to develop a fuzzy inference engine
(FIE), which delineates the fuzzy codon—noncodon parts.
Methods and material: Relevant algorithms developed for the fuzzy inference in
question are based on information-theoretic (IT) considerations applied to symbolic as
well as binary sequence data representing the DNA. Pseudocodes, as needed are
furnished.
Results: Simulated studies using human and other bacterial codon statistics are
presented to illustrate the efficacy of the approach pursued. The outcome of the
study is illustrated via tabulated results and graphs depicting the delineation sought.
Conclusion: The results signify the success of IT-approach pursued in delineating
imprecise codon/noncodon boundaries. The FIE applies both for human and bacterial
codon statistics.
# 2005 Elsevier B.V. All rights reserved.
297 3469; fax: +1 561 297 2336.
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1. Introduction

The deoxyribonucleic acid (DNA) utters the lan-
guage of life systems profiled by the essence bio-
chemistry as elaborated in the topics of molecular
biology. A strand of DNA is made of a chain con-
stituted by four buildingmolecules known as nucleo-
tides that are linked covalently. These four
nucleotides are nucleic acid bases, namely, adenine
(A), guanine (G), cytosine (C) and thymine (T). The
hereditary instructions are written in this set of four
alphabets {A, G, C, T}. A DNA in essence, represents
a chain of these bases in the form of two-stranded
double helix conforming to a chemical fitting of A
pairing with T and G with C. The order of the bases
along a DNA strand is known as the sequence [1—3].

The nucleotide bases of the set {A, T, C, G} form
triplets, also known as tri-nucleotides. A DNA
sequence is essentially made of two compositional
set of such triplets: (i) The coding DNA part where
the triplets constitute the so-called codons and the
codon usage is directed at encoding for a protein.
These proteins are responsible in driving the enzy-
matic machinery of living organisms. (ii) The non-
coding (or ‘‘junk’’ codon part) in the DNA is not
involved in such protein encoding functions.
Although considered to have no defined functions
except of some genetic relics [4—7], many of non-
codon functions still remain unknown. (There are
however, many regulatory functions (e.g. promo-
ters), which are known to be located in this ‘‘junk’’
DNA part mainly in regions flanking coding DNA).

The occurrence frequencies of triplet contents in
the coding and noncoding domains of a genomic DNA
(representing a large scale of sequencing bases),
constitute the so-called coding statistics [8].
Further, the embodiment of codons and noncodons
and their random occurrences conform to a statis-
tical (binary) mixture description of a DNA struc-
ture; and, the massive population-size of codon/
noncodon constituents in living systems (regardless
of their functional attributes) and their interdepen-
dence characteristics render such a mixture to be
aptly described as a complex system [9].

Associated with the complexity of molecular biol-
ogy is a rich profile of information in vivo; and, the
art of bioinformatics in general, refers to collecting,
organizing, retrieving and analyzing such informa-
tion-bearing data set. However, rigorous use of
information-theoretics (IT) and related measures
to handle and assay bioinformatic entities is still
in infantile stage [10]. The heuristics of information
in vivo form the core of bioinformatic efforts
[5,6,11].

Viewed in its complex system profile, a DNA
sequence can be mostly described only in an
‘‘approximate way’’ in terms of its constituents
and their characteristics. This ‘‘approximate nat-
ure’’ and the associated subjectiveness as well as
the imprecise queries on the data sequence char-
acteristics and the expression profiles make the
associated data-mining efforts in bioinformatics
(dealing with massive DNA information) a difficult
task vis-à-vis the underlying fuzzy (mining) space.
Concurrently, when observed in the IT-plane, the
DNA complex reflects a profile of information com-
plexity with fuzzy attributes [12—14].

The fuzzy consideration in mining a large
sequence data in general, has real-world implica-
tions. Specific to bioinformatics [6,11,15], — a dis-
cipline that applies computer technology to
bioengineering and helps managing massive streams
of data of molecular sequence information for diag-
nostic and therapeutic applications — the data-
mining applications involving fuzzy analysis space
[12—14] warrant computationally flexible as well
viably tractable efforts that are fast in identifying
the consensus patterns in a vast DNA sequence [3].

Fuzzy logic methods have been only sparingly
used in bioinformatics. For example, in [13] Chang
and Halgamuge present a technique to extract the
protein motif (defined as a signature or consensus
pattern) from sequences of the same family using
neuro-fuzzy optimization. Another study by Tomida
et al. [14] offers an analysis of expression profile
using fuzzy adaptive resonance theory applied
towards clustering of expression data. An algorithm
for fuzzy sequence pattern-matching (in zinc finger
domain) proteins is described in [12]. But consider-
ing codon—noncodon delineation, the methods
available as in [16]) mostly concern with the crisp
border of separation and no fuzzy details are
addressed.

The scope of the present study is therefore,
focused on relevant issues of dealing with such fuzzy
aspects of DNA structures involving a large data-
base. This study presents algorithms for codon—
noncodon delineation in a DNA sequence by applying
the concepts of fuzzy inference engine (FIE). Simu-
lations using codon statistics of human-beings and
other bacterial species (namely, Escherichia coli
(E. coli), Rickettsia prowzekii (R. prowzekii) and
Methanococcus jannaschii (M. jannaschii)) are done
to illustrate the efficacy of delineation approach
pursued. Content-wise, the paper is organized as
follows: In the following section (Section 2), the
fuzzy attributes of codon and noncodon parts in a
DNA complex are described. In Section 3, considera-
tions on DNA sequence analysis and relevant scoring
metrics for statistical discrimination between the
contents of the sequence is elaborated. Section 4 is
devoted to illustrate the use of if-then rule-based
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logical inference towards a coarse-search for codon,
noncodon and overlapping (fuzzy) subspaces along a
DNA sequence. In Section 5, an FIE that uses certain
(IT-based) scoring metrics for content discrimina-
tion (via feature detection) across a fuzzy subspace
having an overlap of codons and noncodons is
explained. Presented in Section 6 are details on
the information-theoretics of a fuzzy DNA domain
and the related algorithmic considerations. Section
7 provides particulars on the simulations performed
and the results obtained thereof. Lastly, inferential
remarks are presented along with a concluding note
in the closure part of Section 8.

2. The nucleotide structure and fuzzy
DNA complex

As mentioned earlier, in the field of molecular biol-
ogy, real-world sequence patterns of a DNA
sequence are largely described only in subjective
notions and approximate norms. That is, sufficient
information about a particular sequence (or a part
of it) may not be available in certain situations
involving DNA studies and some information perti-
nent to a data set could be missing altogether.

A ‘‘spatial event’’ in a DNA sequence pattern
depicts an occurrence set of triplet symbols phased
as a three-letter permutation of A, T, C and G. This
depiction translates into modelling the nucleotide
that conforms to a codon set of 12-dimensions
(=3 phases � 4 bases) fuzzy code. That is, consider-
ing a triplet codon set {Bs0, Bs1, Bs2} made of four
base chemicals Bs 2 {A, T, C, G} with three phases,
namely {0, 1, 2}, a fuzzy code space,J r {r = 1, 2, . . .,
12} can be specified with a cardinality (of the fuzzy
Table 1 An example of codon statistics: human codon frequ

Codon
triplet

fc Codon
triplet

fc

GGG 0.01708 AGG 0.01209
GGA 0.01931 AGA 0.01173
GGT 0.01366 AGT 0.01018
GGC 0.02494 AGC 0.01854
GAG 0.03882 AAG 0.03379
GAA 0.02751 AAA 0.02232
GAT 0.02145 AAT 0.01643
GAC 0.02706 AAC 0.02130
GTG 0.02860 ATG 0.02186
GTA 0.00609 ATA 0.00605
GTT 0.01030 ATT 0.01503
GCC 0.01501 ATC 0.02247
GCG 0.00727 ACG 0.00680
GCA 0.01550 ACA 0.01504
GCT 0.02023 ACT 0.01324
GCC 0.02843 ACC 0.02152
code set) equal to (3 � 4) = 12. Further, each spatial
event under consideration can be attributed with
an ‘‘event-length’’ (or segment length or subse-
quence), which is characterized by a ‘‘value’’ that
depicts a quantitative measure or ‘‘score’’ illustrat-
ing the statistical feature of the event-space.

The portion of a DNA that bears meaningful cod-
ing information is known as exon. In between the
event-lengths exists an ‘‘interval’’ that has insignif-
icant or ‘‘junk’’ features presenting almost a null-
score on the associated event characteristics. Such
noncoding parts of a sequence that occur within the
active gene are called introns. Both event-lengths of
exons as well as the intervals due to introns can be
regarded as random variables and they constitute a
stochastical domain representing the DNA complex.
Junk or not, the entire DNA sequence is faithfully
copied in protein synthesizing processes of a DNA
code transcripted into a molecular language, which
eventually translates into an amino acid language of
the proteins as described in [1,8]. Specifically, pre-
sented in [8], is an article by Guigó on the DNA
composition wherein the usage of codons towards
protein-coding is highlighted in terms of uneven
probability or frequency of occurrence of tri-nucleo-
tides (triplets).

Thus, considering the stochastical universe of a
DNA sequence, the triplets constituting a protein-
coding part are those that can be characterized by
uneven probabilities of occurrence in the chain
specific to a given living system. Denoting this
set as X:{xi}, its elements (triplets) being purely
protein-making codons are assumed to have non-
uniform probabilities of occurrence; and, the sub-
script i on the element xi denotes the location of
this codon set as a subspace (subsequence) in the
ency usage ( fc) (http://www.kazusa.or.jp/codon/ [17]).

Codon
triplet

fc Codon
triplet

fc

TGG 0.01474 CGG 0.01040
TGA 0.00264 CGA 0.00563
TGT 0.00999 CGT 0.00516
TGC 0.01386 CGC 0.01082
TAG 0.00073 CAG 0.03295
TAA 0.00095 CAA 0.001194
TAT 0.01180 CAT 0.00956
TAC 0.01648 CAC 0.01400
TTG 0.01143 CTG 0.03993
TTA 0.00555 CTA 0.00642
TTT 0.01536 CTT 0.01124
TTC 0.02072 CTC 0.01914
TCG 0.00438 CCG 0.00702
TCA 0.01096 CCA 0.01711
TCT 0.01351 CCT 0.01803
TCC 0.01737 CCC 0.02051

http://www.kazusa.or.jp/codon/
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universe of DNA sequence domain. The distribution
statistics of codons is decided by the species (such
as human-being, bacteria, etc.) to which the
DNA belongs to, and relevant probability set is
denoted by [{P1x}a=1,2,. . .,64]i with xi 2 X:{xi} andP64

a¼1ðP1xÞa ¼ 1
h i

i
where a depicts the 43 = 64 per-

muted triplets (or possible three-letter words of the
genetic language) formed by the base chemicals A,
T, C, or G. The set of {P1x}a of the human DNA, for
example, is listed in Table 1. (Similar details on
bacterial species etc. are available in the GenBank
web site cited as [17].)

The noncodons (or the so-called ‘‘junk’’ codons)
that do not carry any distinct functional attributes
can be modelled with equally likely random occur-
rences of the 64 triplets. That is, denoting the
noncodons by a set Y:{yk}, the occurrence probabil-
ities of the constituent triplets are assumed to have
a uniform distribution, namely [{P2y}a=1,2,. . .,64]k = 1/

64 and
P64

a¼1ðP2yÞa ¼ 1
h i

k
. These subspaces of non-

codon set (junk codon subsequences) are presumed
to exist as ‘‘interval’’ events (identified by the index
k) along a DNA sequence. The X and Y subspaces are
illustrated in Fig. 1.

Apart from the set of X and Y subsequences
(depicting codon-only and noncodon-only parts
Figure 1 (A) A DNA chain divided into subsequence domains
mixed codon—noncodon occurrences. These subsequences are
designated as follows: codon subsequence set X:{xi}, noncodo
set Z:{zj}. They correspond to lengths of event-spaces (‘c)i, (‘nc
Z. Illustrated are transition indices (a, b, . . ., h) and the scale o
fuzzy Z regimes.
respectively), there is also a possibility of a third
set of subsequence domains (Z) along the DNA chain
that contain overlapping codons and noncodons as
shown in Fig. 1. This fuzzy database relation repre-
senting imprecise codon/noncodon attributes of the
contents exists in a jth subspace [Z:{zj]r (with
r 2J 12) as detailed in Fig. 2.

Thus, the DNA chain under consideration contains
a set of differential segments (or blocks) {D‘}i or k
belonging to X or Y respectively; and, corresponding
to each such differential segment, certain ‘‘tuples’’
can be prescribed in linguistic norms in order to
describe the extent to which the differential seg-
ment in question belongs to codon or noncodon
type. For instance, (D‘)i 2 X) (Excellent, very
good), (D‘)k 2 Y) (Good, fair), etc. are examples
of such tuple formats [18]. Eventually, these quali-
tative codon/noncodon attributes (in linguistic
descriptions) have to be quantitatively specified
via metrics depicting some degree of confidence
of belongingness towards codon or noncodon attri-
butes.

In summary, considering codon, noncodon and
fuzzy subsequences of Fig. 1, these are denoted
by the sets: X:{xi}, Y:{yk} and Z:{zj} respectively
with event-lengths (‘c)i, (‘nc)k and (‘f)j as illustrated
where {i = 1, 2, . . ., I}, {k = 1, 2, . . ., K} and {j = 1,
(or subspaces) containing codon-only, noncodon-only and
identified by location indices i, k and j respectively and
n subsequence set Y:{yk}, and, mixed/fuzzy subsequence
)k and (‘f)j respectively. (B) A random sequence of X, Yand
f scores (S) that distinguishes the codon X, noncodon Yand
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Figure 2 Illustration of the overlaps randomly placed as dX and dY differential blocks constituting a fuzzy set Z:{zj}. A
moving-window based scoring is performed across these differential-lengths (blocks). Defuzzification of the scored
entities leads to a centre-of-moment value for the codon—noncodon delineating boundary of the fuzzy subspace. It is
denoted as ( p—p)fz in the illustration.
2, . . ., J} are sets depicting the locations (sites or
subspaces) of X, Yand Z respectively as they prevail
along a DNA sequence. The codon parts depicted by
X contain elements xi 2 X only to some degree of
membership {0, 1}. Likewise, the noncodon parts
denoted by Y, contain elements yk 2 Y only to some
degree of membership {0, 1}. The universe
V 2 {X, Y} could also map as patches of X and Y
that are smeared (overlapped) in the space V lead-
ing to a fuzzy part (Z) that can only be vaguely
identified as per some fuzzy relational rules. This
region of overlapping codons and noncodons depict-
ing a fuzzy domain, zj 2 Z can be visualized as a fuzzy
space, J 12 with 64 codons residing at 264 = 4096
corners of a 12-dimensional unit hypercube.

The procedure to construct a data sequence
containing X, Y and Z subspaces that emulate a
DNA sequence is as follows: A test DNA data
sequence is required to contain crisp sets X and Y
and fuzzy parts Z as shown in Fig. 1. The total stretch
of such a DNA chain (of a given species) is a massive
set of triplets of base chemicals {A, T, C, G} located
along its length. Such a DNA chain containing a large
number of N triplet locations can be emulated by
random occurrences of subsequences of three cate-
gories, namely, X, Y and Z. The subspaces (X, Y and
Z) are identified in the simulations by pointer-posi-
tions traversed along the stretch of N locations at
ith, kth and jth classes respectively.

A task involved in DNA analysis and relatedmining
process refer to both identifying locations of sub-
spaces (X, Y and Z) as well as analyzing exclusively
the fuzzy vector space representing Z:{zj}. Applying
fuzzy set theory in the context of such DNA analysis
warrants decision-theoretics based on if-then rules.
These rules are first applied to identify the locales of
subspaces, namely (X, Y and Z); and, as a next step,
the concepts of fuzzy theory are invoked with refer-
ence to fuzzy subspaces depicting the J 12-dimen-
sional vector space of Z:{zj}, in order to deal with
the associated imprecise information. Hence, sub-
jective (expert) opinions are exercised on the enti-
ties that are specified as linguistic terms across the
elements of the set {zj}. In this context, there could
be vague queries such as, ‘‘Which part of the DNA
chain or segment is domineering in coding for the
protein?’’ or ‘‘Which clusters of triplets along the
DNA chain belong significantly to the ‘‘junk set?’’
that are posed more often to DNA database users
than precise queries. Therefore, resorting to fuzzy
concepts is essential to address such imprecise or
fuzzy queries.
3. DNA sequence analysis

The DNA analyses (such as codon—noncodon discern-
ing) are bioinformatic data-mining efforts immi-
nently required in the feature detection efforts
pertinent to DNA structures. That is, a practical
need prevails in DNA analysis to detect regions of
shared similarities in the polynucleotide complex
and distinguish them from regions that are distinctly
dissimilar from them.

The analysis concerning codon/noncodon deli-
neation in the universe of a DNA chain has essen-
tially two steps: (i) the first task is to distinctly
segregate similar subsequences and group them as
X, Y and Z categories; and (ii) the second exercise
refers to determining the border of separation of
overlapping (fuzzy) codons and noncodons within
the subsequence of Z:{zj} category.

Aggregating similar subsequences in a DNA chain
will reduce the search-space of analysis into three
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conglomerated sets, X, Yand Z. Otherwise, multiple
constituents of subsequences representing codons,
no ncodons and fuzzy parts in a DNA complex, the
total data sequence in real-world situations could
be very large. As such, simple applications of if-then
rules to analyze and discern the constituent sub-
sequences may become explosive due to inevitable
curse of dimensionality. By segregating the sub-
spaces (as X, Y and Z), the regions will then be
distinctly identified in three smaller parts, so that
each part would become more amenable for a
restricted search-space analysis.

Thus, isolating a the fuzzy subsequence Z for
example, it becomes available as an exclusive
search-space and can be subjected to limited fuzzy
queries pertinent to its tuple contents; and, appro-
priate metrics can be used to quantify the member-
ship of belongingness of the tuples (in each
differential block) of this fuzzy domain. The asso-
ciated effort corresponds to ‘‘scoring’’ shared simi-
larity features. In other words, the scoring method
quantifies the extent of codon and/or noncodon
attributes of a test segment (denoting a differential
block) of a subspace in a DNA chain. For the purpose
of such scoring, some molecular-biology concepts
have been adopted in practice. Relevant considera-
tions are briefly indicated below [19]:
(1) S
ignature scoring: A ‘‘signature’’ in the context
of a DNA sequence refers to an amino acid
distribution resulting from the expression of
the DNA. Scoring on the signature within a
sequence token involves assessing the probabil-
ity of occurrence of the amino acid.
(2) L
ength scoring: In this effort, a target length is
specified for a token sequence of a DNA; and, any
observed length in the scoring effort is assumed
as a random variable around the target length
within a specified set of upper and lower bounds.
(3) C
harge and hydrophobicity scoring: This refers
to scoring based on the abstract notions on the
extents (high or low) of charge-content and
hydrophobicity associated with a DNA sequence.
Correspondingly, a measure of charge is asso-
ciated with an amino acid in the sequence and a
hydrophobicity index is specified for the
sequence as scoring metrics.
(4) A
mphipalic alpha helix and beta sheet scoring:
These are another set of scoring functions simi-
lar to charge and hydrophobicity scoring and
they correspond to hydrophobic and hydrophilic
weightings that can be attributed to a given DNA
sequence.
Thus, there are four characteristics of a DNA
sequence that can be subjected to scoring towards
assaying shared similarities and feature detection in
DNA populations.

As mentioned before, an example of feature
distinguishing task in bioinformatics corresponds
to identifying and delineating codon (X) and non-
codon (Y) entities with a boundary of separation
either when the regions of codons and noncodons
are adjunct to each other (with a distinct or crisp
boundary of separation) or when the codon and
noncodon constituents exist within a subsequence
as overlapping differential blocks posing an impre-
cise demarcation of separation.

The present study offers a method of analyzing a
DNA complex in the perspective of the following two
efforts: implementing first a coarse-search to iden-
tify the X, Y and Z regions using codon statistics
pertinent to a test DNA sequence of a given species.
Concurrently, this coarse-search would enable
ascertaining borders between the three categories
of regions {X, Y and Z} involved. The procedure
adopted thereof is based on if-then or else condi-
tional logic. It uses the Euclidean distance measure
for the if-then decision applied to distinguish a
codon from a noncodon field.

The second task refers to performing exclusively
a fine-search on the region Z that has fuzzy attri-
butes. Inasmuch as the codons and noncodons are
overlapping in this fuzzy domain Z:{zj}, a precise or
crisp boundary of separation for the codon—non-
codon contents cannot be specified (within Z).
Therefore, the concepts of fuzzy characterization
are applied to prescribe tuples for the differential
blocks of events in the fuzzy subsequence in qua-
litative norms that describe (subjectively) the
extents of codon and/or noncodon content (across
each differential length). A subsequent effort will
be the conversion of these qualitative descriptions
into classes of membership function so that a
quantitative value can be prescribed for the con-
tents of each differential block being tested;
hence, a centroidal location of the border of
codon—noncodon delineation for the subsequence
being analyzed can be elucidated via defuzzifica-
tion.

Relevant to scoring evaluated in each search
process (namely, the coarse- and fine-search), a
set of IT-measures [20—24] are considered here as
outlined below:
(I) E
uclidean distance (ED) metric–—a metric that
indicates greater similarities between a pair of
vector spaces (representing, for example,
codons and noncodons) when the Euclidean dis-
tance between them is smaller.

In general, the Euclidean distance (dE) spe-
cifies scoring (SE) of similarities/dissimilarities
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between a pair of two vectors v1 and v2 by a
measure given by [21]:

SE ¼ dEðv1; v2Þ ¼ jjv1 � v2jj (1)
(II) T
o estimate the shared similarities/dissimilari-
ties across the differential blocks in a fine-
search applied to a fuzzy domain representing
the subsequence Z:{zj}, the scoring measures
adopted are as follows.

Fisher linear discriminant metric [25]. This is
a discriminant function depicting some mea-
sured scores elucidated (for example, on a set
of differential blocks of overlapping codons and
noncodons) enables a way by which the blocks
are ‘‘best discriminated’’.
Cross-entropy measure: This metric facilitates
the assessment of relative information between
the differential blocks in the fuzzy subspace,
Z:{zj} using the statistical divergence concept of
Kullback and Leibler (KL) [23,26,27].

Statistical distance measure: This measure
assesses the statistical parameters (like variances
and covariances) of distributions belonging to a pair
of populations (such as codons and noncodons) in a
test space so as to distinguish the similarities/dis-
similarities between them. Example of this metric
are: Mahalanobis and Bhattacharyya distances
[21,24].

Correlation measure: It denotes for example,
Hamming distance applied to a pair of sequences
(representing for example, the codon and noncodon
segments) taken in their binary formats. It refers to
the outcome of an XOR (modulo-2) operation per-
formed between the binary chains [28].
4. If-then rule-based decision logic for
a coarse-search of X, Y and Z regions

Referring to Fig. 1, various transition boundaries
across the subsequences of codon, noncodon and
the set of fuzzy regimes along an arbitrary DNA
sequence can be identified as follows:

fa; c : !ðxiÞ-to-ðz jÞg; fb; d : !ðz jÞ-to-ðxiÞg;
fe : !ðxiÞ-to-ðykÞg; f f : !ðykÞ-to-ðz jÞg;
fg : !ðz jÞ-to-ðykÞg; fh : !ðykÞ-to-ðxiÞg (2)

The transitions marked as a, b, c, d, f and g in Fig. 1
exist between crisp and fuzzy subspaces. On the
other hand, the transitions e and h exist between
nonfuzzy regimes of X:(xi) and Y:(yk) or vice versa
and as such, they are crisp transitions.
To identify the set of transitions {a, b, . . ., h} in
Fig. 1, a coarse-search can be performed using the
following considerations: suppose a metric is
assigned to score the extents of codon and noncodon
characteristics in the event-spaces of the DNA
sequence. Hence, let (S = sc) be the score measured
in a codon-only domain (X). Likewise, considering an
all-noncodon region (Y), let the score value be
(S = snc).

Now, with reference to a Z:(zj) subspace, suppose
the score (S = sfz) depicts the mean value of the
measurements on the differential blocks across the
subsequence (as per the adopted metric). This score
will be distinctly smaller than sc but larger than snc,
that is, snc < sfz < sc. Thus, using an if-then rule-
based logical algorithm (described below), the X, Y
and Z regions can be distinguished in terms of their
relative scores. Concurrently, the border set {a, b,
. . ., h} that delineates the subsequences X, Y, and Z
is ascertained.

As mentioned before, the score values as above
are determined on the basis of a statistical ED-
measure (Q = SE). Currently, it is specified in a scale
from 0 to 100. The zero value of Q means that the
probability distribution of the population of the
content (in the region being scanned) is uniform
with a probability of occurrence (P2y) equal to 1/64
for each of 64 possible triplet sets (made of the base
set A, T, G and C). This would confirm that the
scanned subsequence is a noncodon region (Y).
WhenQ = 100, it means that the region being tested
fully conforms to an uneven occurrence probability
distribution of the triplets, namely, P1x (of xi 2 X) as
specified in the GenBank database [17] for the
codons of the DNA (of the biological species) being
investigated.

In order to compute Q-values, first a reference
set of ED-values pertinent to noncodon occurrence
frequency of fnc = (P2y) = 1/64 versus codon occur-
rence frequency fc = (P1x) is determined for all 12
base-phase combinations (A0, T0, C0, G0; A1, T1,
C1, G1; A2, T2, C2, G2). Denoting these reference
values as DRefA0, etc., they are explicitly given by:
DRefA0 = jfcA0 � fncA0j, DRefT0 = jfcT0 � fncT0j, . . .,
DRefC2 = jfcC2 � fncC2j and DRefG2 = jfcG2 � fncG2j.

Next, considering a window of sample length
along the test sequence, the occurrence frequency
( fs) of the sample (test) population of bases versus
the occurrence frequency of bases in a pure codon
set (of an aligned length/window), namely, fc
is determined for all base-phase combinations
(A0, . . ., G2). Denoting these computed values as
DSampleA0, etc., the following set is obtained:
DSampleA0 = jfcA0 � fsA0j, DSampleT0 = jfcT0 � fsT0j,
. . ., DSampleC2 = jfcC2 � fsC2j and DSampleG2 =
jfcG2 � fsG2j.
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By definition, Q is specified as a percentage of
the ratio between the reference and sample dis-
tance. As such, the values of Q are prorated to be
between 0 and 100 by appropriately weighting the
ratio in question. An example of such prorating is as
follows:

½QSampleA0� ¼ ½ðDSampleA0=DRefA0Þ � 100�;
if ðDSampleA0<DRefA0Þ; or;

½QSampleA0� ¼ ½ðDRefA0=DSampleA0Þ � 100�;
if ðDSampleA0�DRefA0Þ; . . . ; etc: (3)

The aforesaid calculations on Q-values are done for
the entire base-phase combinations (QSampleA0, . . .,
QSampleG2) across the entire DNA sequence and are
used to construct a decision logic so as to infer
whether the sample length in question belongs to
codons (if, Q! 100), or noncodons (if, Q! 0). In
the event of overlaps of sequence contents posing
an ambiguity on codon/noncodon classification, the
scoring statistics will invoke a decision logic in order
to arrive at the required classification based on the
value, 0 < Q < 100.

The if-then or else decision logic for the sample
set of polynucleotide bases considered above uses
appropriately the computed set of 12 scores,
namely (QSampleA0, . . ., QSampleG2) in the Mandani’s
algorithm [29] where each possible combination of
Q-values is subjected to the if-then or else condi-
tions. This leads to the decision whether the output
function specifies a codon, a noncodon or corre-
sponds to a fuzzy subsequence. Since there are 12
Q-scores, there will be 212 = 4096 sets of if-then or
else statements as listed in Appendix A.

With reference to the if-then or else statements
indicated above, there are two input activation
functions used. They refer to noncodon- and
codon-scoring levels abbreviated as sc and snc
respectively. Correspondingly, there are three out-
put activation functions to declare the output as
codons, noncodons or fuzzy (abbreviated as sc, snc
and sfz respectively). The resulting set of discrete
outputs is aggregated over the entire 4096 decisions
to produce a hard decision for each sample length
(window) of pointer-positions traversed across the
test DNA sequence. This process leads to ascertain-
ing the codon/noncodon delineating transitions,
namely {a, b, . . ., h} prevailing across the DNA chain.
The above method is pursued in a sequential codon-
first and then noncodon-next search across a search-
space by traversing only an appropriate (limited)
DNA chain of interest. The decision-logic algorithm
described above for coarse segregation of codon/
noncodon regions is illustrated with a pseudocode in
Appendix B.
5. A fine-search for delineation of
imprecise boundaries within a Z:{zi}
subspace

Having identified a fuzzy subsequence Z{zj} via the
coarse-search as above, the next step is to deter-
mine the boundary of separation (marked as ( p—p)fz
in Fig. 2) across the differential blocks containing
codon and noncodon constituents (whose extents of
the presence are imprecisely known due to the
overlaps of the blocks). The task in hand is there-
fore, to ascertain this boundary using the associated
codon—noncodon statistics. It refers to computing
the coordinates of the boundary location, ( p—p)fz
done via defuzzification using the centre-of-area
(CoA) or moment procedure [29]. The relevant con-
siderations are as follows.

The delineation of codon—noncodon boundary as
addressed in the existing works (such as in [16]),
considers only those cases wherein the parts being
contrasted are crisp sets. Hence, the studies pur-
sued elucidate borders between codon and nonco-
don domains assuming that the delineating
boundaries are sharp or unambiguous so that they
can be dichotomized or bifurcated distinctly with a
specified clarity and preciseness. For example, the
technique envisaged in [16] uses thereof an entropy
segmentation method. It involves computing the
mutual entropy on codon occurrence statistics in
the adjacent subsequences of codon and noncodon
parts. This mutual entropy between them is scored
in terms of a divergencemeasure (known as Jensen—
Shannon (JS) measure [22], which is related to the
general class of KL-measure [2] as will be described
later). This metric estimates the relative entropy
(or mutual information) between the data sets using
the associated codon statistics. The corresponding
change in the measure (score) computed across the
tested parts enables ascertaining the required crisp
demarcation.

Contrary to such precise demarcation evaluated
in [16], as emphasized earlier, the real-world mix-
ture of codon and noncodon parts is rather a random
domain with imprecise overlaps that exhibit fuzzy
characteristic across their transition boundaries.
With due consideration of such dissonance in clarity
of mixture constituents in a DNA subsequence such
as Z{zj}, attempted here is a method to determine
the borders between overlapping blocks (within Z)
using information-theoretic scores based on a set of
metrics imposed on the membership functions. To
illustrate the underlying considerations, the details
on IT-considerations pertinent to a fuzzy codon—
noncodon structure are presented in the following
section.
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6. Information-theoretics of fuzzy
codon—noncodon mix

The heuristics of information-theoretics that can be
applied to the fuzzy sequence model depicting a
subspace such as Z 2 {zj:(xi, yk)}, in essence follows
the principles of relative entropy (in KL sense [2]). In
terms of relevant statistical divergence, the mutual
or relative entropy of a fuzzy set Z 2 {zj) under
consideration can be described as follows: Suppose
Zc denotes the complement of Z. The fuzzy mutual
entropy implies a logistic map of relative entropy of
the sum J-components belonging to the fuzzy set
Z:{zj=1,2,. . .,J} � {x1, x2, . . ., xI:y1, y2, . . ., yK}J=(I+K),
relative to a complement set Zc. In other words, for
the set Z:{zj} specified in a unit hypercube [0,1]J,
the fuzzy mutual entropy is given by [24]:

I ¼ ½HðZ=ZcÞ � HðZc=ZÞ� 2 IJ (4)

It is shown in [23] that the fuzzy mutual entropy
of Eq. (4) is equal to a corresponding divergence of
Shannon entropy in the fuzzy domain implying that
the information field in the fuzzy cube IJ refers to an
inward or outward flow of entropy (information) flux
in the hypercube. Further, the associated fuzzy
cubes map smoothly onto extended real-spaces
(RJ) of the same dimension and vice versa. That
is, RJ! IJ indicate an one-to-one ratio on a differ-
entiable map D: Z(zi) in IJ with a differentiable
inverse D0(dj). This differential map of D(dj) or D

0(dj)
refers to a fuzzy system; and, it specifies a conver-
sion of unbounded real inputs zj to a set of bound
values (or ‘‘fit values’’), di as follows [23]:

dj ¼ 1=½1þ expð�z jÞ� (5)

so that iff zj!1, dj! 1, and iff zj!�1, dj! 0.
As well known, by associating a probability of

occurrence pj with zj, the concept of Shannon
entropy is governed by the following chain of prob-
abilities (and entropies) in accordance with the
traditional concepts of Shannon information-theo-
retics:

pj!ð1= pjÞ! logð1= pjÞ!S j p j logð1= pjÞ (6)
ð1� pjÞ! ½1=ð1� pjÞ�! log½1=ð1� pjÞ�
!S jð1� pjÞ log½1=ð1� pjÞ� (7)

Likewise, a fuzzy chain can be formulated in terms
of dj as follows:

dj!½1=ð1� djÞ�! log½dj=ð1� djÞ�
!S j¼1;2;...;nfdj log½dj=ð1� djÞ�g ¼ HðZ=ZcÞ (8)
Similarly,

ð1� djÞ! 1=dj! log½ð1� djÞ=dj�
! S j¼1;2;...;Jfð1� djÞ log½ð1� djÞ=dj�g
¼ HðZc=ZÞ (9)

Hence, by defining a relative fuzzy information unit
as log[dj/(1 � dj)], the following relation can be
deduced for the explicit representation of Eq. (4)
from the considerations of fuzzy mutual entropy
indicated above:

S j¼1;2;...;Jflog½dj=ð1� djÞ�g

¼ HðZ=ZcÞ � HðZc=ZÞ (10)

The characteristics of fuzzy information flux dis-
cussed above are elaborated by Neelakanta and
Abusalah in [23] and summarized as follows:
� F
uzzy mutual entropy is flux-like and is specified
by an information field in a fuzzy cube;
� T
he points on a fuzzy cube correspond to fuzzy
uncertainty descriptions;
� F
uzzy mutual entropy is equal to the negative of
the divergence of Shannon entropy;
� S
hannon entropy and fuzzy mutual entropy define
vector fields on the fuzzy cube;
� S
hannon entropy is similar to a potential of the
conservative mutual entropy vector field. Thus,
the dynamical aspects of information flux flows on
the fuzzy cube correspond to governance by the
second law of thermodynamics.

Commensurate with the IT-aspects of a fuzzy do-
main deliberated above, a set of (information-the-
oretic) metrics can be formulated for scoring
purposes in fuzzy domains akin to similar measures
specified for crisp sets [2,23,26]. In general, the IT-
measures required for contrast evaluations (in crisp
as well as in fuzzy domains) can be specified in terms
of the associated statistical divergence between the
entities being contrasted or by determining the s-
tatistical distance between them. Generally known
as statistical discriminants and distance measures, a
host of such formulations have been developed in
the past [21—23,26] and applied to various disci-
plines of science, engineering, economics, etc.

Currently, four versions of such metrics are cho-
sen and adopted toward scoring for codons—nonco-
dons discrimination in a fuzzy block (Z) of a DNA
sequence. These measures as identified earlier are
as follows: With reference to a symbolic represen-
tation of the DNA sequence, (i) the Fisher linear
discriminant metric; (ii) the statistical divergence
based on cross-entropy considerations; (iii) the sta-
tistical distance depicting the measure of stochas-
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tical dissimilarity between a pair of statistical data
sets are adopted; and (iv) a correlation measure
ascertained from the modulo-2 operation (yielding
the Hamming distance) between a pair of binary
sequences is used to score the sequence taken in the
binary format. (However, without any loss of gen-
erality, other related measures as reported in [21—
23,26] can as well be used in lieu of the four metrics
mentioned above.) Presented in the following sub-
sections are brief notes on the four selected metrics
that are subsequently deployed in the computations
of the delineations in test fuzzy data sequence
domains.

6.1. Fisher linear discriminant measure

The Fisher linear discriminant (F) metric is an IT-
measure that can be built to prescribe a linear
discrimination function with coefficients optimized
on the basis of statistical or entropy features of a
data set. It can be used as a scoring metric to
contrast two statistical sets possessing a relative
uncertainty.

Relevant to the present study, this contrasting
ability of F-metric is shown to determine whether a
set of triplets constituted by chemical bases {A, T, G,
C} that are situated over a differential length (or
‘‘block’’) of a DNA subsequence is coding (protein-
making) or noncoding (‘‘junk’’) type. That is, the F-
metric adopted provides a scoring mechanism that
helps distinguishing similarities or dissimilarities
across the differential blocks of Z.

The concept of discriminant function under dis-
cussion was originally developed by Fisher in 1936
[25] with the objective of elucidating a method that
classifies or distinguishes a pair of data sets. In other
words, relevant effort is concerned with finding out
the extent to which two sets of data are statistically
similar or dissimilar. The classical effort of Fisher
refers to taxonomic problems and involves prescrib-
ing a linear function (F) with unknown coefficients
{li} for a set of measurements {fi}; and, this func-
tion in effect, is optimized with a choice of {li} so as
to provide the largest scoring that distinguishes the
two test data sets. That is, the linear discriminant of
the measurements with optimized coefficients
enable an algorithm by which the ‘‘populations
are best discriminated’’ [25].

For example, the question addressed by Fisher in
[25] is pertinent to four measurements (f1, f2, f3,
f4) on four characteristics of a flower (namely, sepal
length, sepal width, petal length and petal width);
and, the discriminant function F = (f1l1 + f2l2 +
f3l3 + f4l4) is optimized with appropriate choice
of the set {l1, l2, l3, l4} so that the ratio of the
difference between the specific means to the stan-
dard deviations within the species of flowers stu-
died. This maximized value indicates the extent of
statistical separation between the species in terms
of their similarities or dissimilarities (assessed via
floral characteristics obtained in the experiments
due to Fisher).

6.2. Statistical divergence metrics

Another set of metrics advocated here for contrast
evaluation in a fuzzy data sequence is based on
statistical divergence concept. A number of such
metrics have been formulated in the existing litera-
tures [2,21—23,26] and they are in general, based on
the so-called KL-concept of cross-entropy or mutual
information arising from the difference in the sta-
tistical attributes of the two statistical entities
being compared. More generally, they all fall under
the scope of so-called Csiszár metrics described in
[23,26,30] and briefly addressed later in this sec-
tion.

The statistical divergence concept of contrasting
can be applied to both crisp as well as fuzzy features
and can be used for data sequence discrimination.
For example, the entropy-based metric suggested
and used in [31] refers to the so-called Jensen—
Shannon (JS) measure (indicated before) and it
essentially belongs to the class of KL-measures
[22]. It compares two vector spaces, vc and vnc
corresponding to codon and noncodon regions
respectively in terms of the associated cross-entropy.
It is shown in [16] that the entropic segmentation
approach using the JS-measure could lead to pre-
dicting the borders between coding and noncoding
regions without any a priori training details on known
sets. Relevant procedure is also shown to be more
precise than a simple moving-window technique that
can be used in discerning a coding DNA from a non-
coding DNA. However, the method detailed in [16]
addresses only the crisp sets of codons and nonco-
dons, which do not have any ambiguous overlaps.

The concept of divergence metric (such as JS-
measure adopted in [16]) can be extended in terms
of the associated entropy considerations to model a
fuzzy DNA composition. As such, addressed in the
present study are the feasibility and usage of entro-
pic segmentation technique with the infusion of
fuzzy considerations. Also indicated is the feasibility
of using other statistical divergence/discriminant
measures (in lieu of JS-measure used in [16]) for
data sequence discrimination applications under
discussion).

The entropy-based discriminant measures repre-
senting the divergence between vector-spaces in
question are essentially entropy-specific metrics
based on the expected value of the likelihood-ratio
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of statistics of two entities (such as codon—nonco-
don populations). These expected values of like-
lihood-ratio are general representations of cross-
entropy (or mutual information) between the
statistics of the two regions under consideration.
The cross-entropy/mutual information functions
between the statistics stipulated via P1x and P2y
are given by KL-metric pair, namely, KL1 = KL1,2
and KL2 = KL2,1:

KL1;2 ¼ I1;2 ¼ �
X
n

P1x;n logðP1x;n=P2y;nÞ (11)

KL2;1 ¼ I2;1 ¼ �
X

P2y;n logðP2y;n=P1x;nÞ (12)

n

Suppose a DNA sequence is specified by a vector
space v1,2 with l,2 depicting a pair of accountable
sets of entities (constituted by subsequences of
codons and noncodons in the present case) having
the probabilities of occurrence P1x and P2y. Suppose
the minimum discernible ‘‘distortion’’ (DL) depict-
ing the similarity and dissimilarity features between
the subsequence #1 and #2) is assessed in terms of
minimum cross-entropy given by the relations of
Eqs. (11) and (12); that is, DL(d) � information con-
tent [I1,2 or 2,1(d)] where, d is a measurable entity of
dissimilarity between the sequences seen as a ‘‘dis-
tortion’’ feature (DL) or information loss in one data
sequence with respect to the other.

Further, Eqs. (11) and (12) representing the KL-
measures of divergence are expectations under two
hypotheses, namely [h]u with u = 1, 2; and, P1x (x) is
the probability of the observations on xi when the
hypothesis [h]u is true. Hence P1x/P2y or P2y/P1x
depicts the log-likelihood-ratio, L(x) and the rela-
tions of Eqs. (11) and (12) denotes, in essence, the
E[log{L(x)}], where E[.] is the expectation operator.

An associated measure called symmetrized KL-
measure is referred to as Jeffery’s measure (J). It
is defined as, J ¼ p1KL1þ p2KL2 ¼ p1I1;2 þ p2I2;1
where the weighting coefficients p1 and p2 are such
that (p1, p2) < 1 and (p1 + p2) = 1. In a symmetric
consideration (between 1, 2 vector spaces),
p1 = p2 = 0.5.

Further, as mentioned before, the JS-measure
adopted in [16] is also implicitly related to the
KL-measure. It is a generalized divergence given
by [22]:

JSðP1x; P2yÞ ¼ Hðp1P1x þ p2P2yÞ � p1HðP1xÞ

� p2HðP2yÞ (13)

where H(g) is equal to �
P

PðgÞ log½PðgÞ� denoting
the Shannon information.

In addition to the KL-, J- and JS-measures indi-
cated above, there are other divergence measures
that can also be considered to distinguish the sta-
tistics of two entities (such as the codons and non-
codons). As mentioned before, they can be grouped
under the so-called Csiszár family of entropy mea-
sures [23,26,30]. These are based on Csiszar’s f-
divergence concept described in [23,26]; and a
generalized representation of these measures is
given by:

DRðP1x : P2yÞ ¼
X
‘

ðP1xÞ‘Ff½ðP1xÞ‘�=½ðP2yÞ‘�g (14)

X

DRðP2y : P1xÞ ¼

‘

ðP2yÞ‘Ff½ðP2yÞ‘�=½ðP1xÞ‘�g (15)

where F(�) is a twice differentiable convex function
for which F(1) B 0 and the discriminant function DR

satisfies certain essential and desirable character-
istics elaborated in [23,26]. The KL-, J- and/or JS
measures are special cases of Csiszár measure.

6.3. Statistical distance measures

These are statistical distance metrics that can also
be used as discriminant functions to determine the
‘‘similarities’’ or ‘‘distances’’ between two sets of
entities denoted by the subscripts 1 and 2. A com-
monly used measure of such distance or similarities
is known as Mahalanobis measure (M) [21,24]. It is
based on the concept of Euclidean distance (dE)12.
When the vectors v1 and v2 representing two dif-
ferent populations (pools) of data, the ED-measure
(dE)12 can be specified in terms of m1 and m2 depict-
ing the mean values of the vectors v1 and v2 respec-
tively. That is, by defining m1 = E[v1] and m2 = E[v2]
with E[�] again representing the expectation opera-
tor, the squared value of the ED from v1 and v2 is
given by:

½ðdEÞ12�
2 ¼ ðv1 � m1ÞTS�1ðv2 � m2Þ (16a)

where T is the transpose operation and S�1 the
inverse covariance matrixS. The covariance matrix
is given by:

S ¼ E½ðv1 � m1Þðv1 � m1ÞT�

¼ E½ðv2 � m2Þðv2 � m2ÞT� (16b)

The ED-measure depicted via Eq. (16) is the explicit
form of Mahalanobis measure and it is a ‘‘coefficient
of likeness’’ classically specified as a D2-statistical
distance norm. It accounts for both variances and
covariances between the frequencies of ‘‘n-words’’,
such as the 64 triplets of a DNA sequence [24].

Another statistical distance measure developed
on the basis of Mahalanobis measure is known as the
Bhattacharyya distance (B) and it is defined with
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reference to a pair of probabilities P1x and P2y as
follows [21]:

B ¼ �
X
‘

lnðr‘Þ; 0< B<1 (17a)

where r is known as the Bhattacharyya coefficient
given by:

r‘ ¼
X
‘

½P1x � P2y‘�1=2; 0< r‘ <1 (17b)

The B-measure is a suitable metric for a select
property of average divergence between the two
statistics being compared. Hence, it is taken as an
example in the present study to illustrate the use of
distance-measure concept to distinguish the codon
and noncodon regimes in the test data pertinent to
DNA compositions.

Anothermeasure closely related to B-measure, is
known as Kolmogorov variational distance (K) [21].
Likewise, there are other hosts of distance mea-
sures identified as Ali—Silvey distance metrics that
have been comprehensively used in practice, espe-
cially in communication systems [21,32]. Though,
the present study uses only the B-measure as a
representative scoring metric, without any loss of
generality, the gamut of entire distance measures
can be tried in the codon—noncodon delineation
efforts.

6.4. Correlation measure

Yet another scoring strategy that can be applied to
quantify the linguistic tuples of a fuzzy domain (such
as Z), is a simple correlation measure (R) that can be
evaluated by modelling a data sequence set in a
binary form. For example, suppose the set {A, T, C,
G} is identically represented by a binary set {00, 11,
01, 10}. Hence, a sequence/subsequence containing
triplets of {A, T, C, G} is first converted into a binary
string. And, a test DNA sequence made of the tri-
plets is correspondingly constructed in terms of
zeros and ones. Then the R-measure under consid-
eration would refer to the difference between the
level of approval (meaning number of 0s) and the
level of disapproval (meaning number of 1s) counted
in the outcomes of a modulo-2 operation performed
on a test binary fuzzy segment (of Zbs being scored)
with respect to an aligned and totally noncodon
subsequence (Ybs) of the same length. (Here, the
subscript ‘‘bs’’ is introduced to denote explicitly
that the subsequences being considered are binary
sets.) The outcome of XOR operation, namely,
Zbs � Ybs is the Hamming distance [28] depicting
the correlation measure (R) under discussion.
6.5. Fine-search with Fisher discriminant
metric

A fine (local) search on an identified fuzzy subspace
(or block) Z:{zj} is required in order to locate
codon—noncodon transition boundaries located
within the fuzzy block and depicted as (p—p)fz. This
search is based on fuzzy evaluations following the
heuristics of ‘‘search and score’’ applied appropri-
ately to assign membership values for the qualita-
tive descriptions of overlapping and ambiguous
codon—noncodon locales across the fuzzy site. It
is done by using a set of finely tuned metrics (such as
the Fisher discriminant, the statistical divergence,
statistical distance or the correlation measure
described above).

The linear discriminant procedure due to Fisher
adopted here refers to scoring the extent to which
the contents of a given differential region within a
fuzzy block of a DNA subsequence described quali-
tatively (in terms of codon-like or noncodon-like
tuple attributes). This scoring is done by comparing
the contents of a test block (dZ) with those of a
reference block that has codon-only (dX) or non-
codon-only (dY) constituents. The procedure is as
follows: suppose two neighbouring differential
event-lengths dX: (‘c)i, dY: (‘nc)k or dZ: (‘f)j within
a test subspace of Z (in Figs. 1 and 2) are assessed.
The procedure under consideration should enable
identifying the delineation of separation, namely,
the border between the differential units in ques-
tion. The score for the set of DNA triplets that
designates the codon or noncodon attributes to each
differential length (of the block being tested), is a
metric that refers to a numerical count of bases in
that block. With reference to the four bases (A, T, C,
G), suppose the corresponding three phases identi-
fying the triplets are designated by a set {0, 1, 2}.
Hence, there are 12 measured scores for each test
differential length depicting to the following base-
phase possibilities: {A0, T0, C0, G0, A1, T1, C1, G1,
A2, T2, C2, G2}.

The next step is to determine the coefficients of a
linear discriminant function of the fuzzy domain Z.
For this purpose, two reference subspaces of equal
lengths XR and YR containing respectively, crisp data
on purely-codons and purely-noncodons are used.
Relevant steps pursued are indicated in the pseu-
docode of Appendix C.

In terms of known coefficients obtained following
the procedure indicated in Appendix C, the Fisher
discriminant function (described earlier) is applied
to the test DNA subsequence Z versus the reference
subspace YR. The values of scores then generated in
each differential-window accounts for the extents
of codons and noncodons in the fuzzy test block.
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Corresponding to the score obtained for each differ-
ential block, tuple characterization is specified to
the pointer-position that defines the differential
block in question. That is, mapping is done to reflect
the scored value of a differential block to a corre-
sponding descriptive tuple for the pointer-position
of that differential window. Then, these tuples or
descriptive values of pointer-positions so gathered
are then subjected to defuzzification. This process
would lead to a centroidal position (of the pointer)
depicting the delineating boundary, (p—p)fz in the
test fuzzy subspace.

6.6. Fine-search with statistical
divergence and distance metrics

The procedure indicated for the fine-search of the
delineating boundary within a fuzzy subsequence
Z{zj} using the Fisher metric can be adopted per se,
with alternative metrics like the KL-, JS- or B-mea-
sure. The only difference will be that each metric
will yield a different scale of measure that scores
the codon—noncodon attributes of differential
blocks. (In the example simulation performed in
this study, the symmetrized form of the KL-measure,
namely the J-measure is used to elucidate the scores
across the differential blocks in a fuzzy test subse-
quence scanned by the pointer-position).

Regardless of the type of scoring metric used (the
F-, KL-, J-, JS-, or B-measure), the defuzzification of
the set of evaluated scores when mapped equiva-
lently upon the pointer-positions (as described
before with reference to Fisher metric) would pro-
vide the centroidal fix, (p—p)fz of the delineating
boundary within the test fuzzy subsequence. The
steps involved in defuzzification are summarized
below.

6.7. Centre-of-area (CoA) or moment
method of defuzzification

This procedure applies to the fine-search procedure
on codon—noncodon delineation within a fuzzy sub-
space, Z (when the DNA sequence is represented in
its symbolic form), using the F-, J- or B-measure as a
scoring algorithm. The scored values assessed across
the differential blocks in the test fuzzy region (Z)
and mapped into corresponding tuples of pointer-
positions are specified as entities belonging to a
specified membership function. The resulting
(mapped) fuzzy pointer-positions are then sub-
jected to defuzzification using a centre-of-area
(CoA) method. Relevant computations are summar-
ized via a pseudocode presented in Appendix D.
6.8. Fine-search with the correlation
metric

While the fine-search methods discussed above are
indicated for a DNA sequence represented in its
symbolic contents of triplets made of A, T, C and
G, the sequence analysis in general, and the codon—
noncodon delineation in particular, can also be
addressed by representing the sequence in question
in a binary format. In such a case, the correlation
measure (described earlier) presenting the Ham-
ming distance across a pair of subsequence sets
being compared, ascertains the similarity or dissim-
ilarity features across a fuzzy subspace (Z) with
reference to a subspace of crisply defined contents
such as purely-codons (X) or purely-noncodons (Y).

To implement themethod under discussion, three
versions of subspaces along the DNA chain are con-
sidered in their binary counterparts, X! Xbs,
Y! Ybs, and Z! Zbs. Then the correlation-
metric-based assessment of codon—noncodon deli-
neation in the fuzzy subspace, Zbs is done via steps in
the pseudocode of Appendix E.
7. Computation, results and discussion

The simulations performed in the present study in
delineating codon—noncodon parts of a DNA
sequence can be listed as below:
� C
onstruction of a DNA sequence (see Figs. 1
and 2).
� C
oarse delineation/identification of codon-only,
noncodon-only and overlapping codon—noncodon
(fuzzy) subspaces along a DNA sequence using if-
then decision logic: The results illustrated in
Fig. 3 show distinct levels of the computed scores
in each region indicating the discerned subspaces
with clarity.
� Im
plementation of fine-search on a fuzzy sub-
space (Z) using the scoring metrics: Fisher discri-
minant, symmetrized KL-measure (J-metric) and
Bhattacharyya distance and application of CoA
method to defuzzify the scored data in the sub-
space Z: relevant presentations of results in
Figs. 4—6 show codon and noncodon subspaces
(X and Y) distinguished by the distinct levels of
the scores. In the fuzzy subspace (Z), the mea-
sured scores are jagged indicating the variations
in the scores as the pointer traverses across the
overlapping codon—noncodon differential blocks.
� Im
plementation of fine-search using the correla-
tion measure (R) on a fuzzy subspace (Z) taken in
binary format: shown in Fig. 7 is a fuzzy subspace
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Figure 3 Computed results to illustrate how the scores
using ED-measure (SE) vs. the pointer-positions along a
test DNA string classify/demarcate the codon (X), fuzzy
(Z) and noncodon (Y) subspaces. Positions I—VII are transi-
tion locales of the codon, noncodon, and fuzzy parts. The
values of SE plotted correspond to an ensemble average of
100 runs. (The test DNA sequence refers toM. jannaschii.)
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Figure 5 Computed scores using Jeffery’s measure (J)
vs. the pointer-positions along a test DNA string made of
codon (X), fuzzy (Z) and noncodon (Y) subspaces illustrate
the associated demarcations. Positions I—VII are transition
locales of the codon, noncodon, and fuzzy parts. The
values of J plotted correspond to an ensemble average
of 100 runs. (Test DNA string: (a) R. prowzekii and (b) M.
(Z) subjected to scoring across its differential
blocks and Fig. 8 depicts computed results with
the R-measure and exercising appropriate defuz-
zification procedure.
gure 4 Computed scores using Fisher metric (F) versus
e pointer-positions along a test DNA string made of
don (X), fuzzy (Z) and noncodon (Y) subspaces illustrate
e associated demarcations. Positions I—VII are transition
cales of the codon, noncodon, and fuzzy parts. The
lues of F plotted correspond to an ensemble average
100 runs. (Test DNA string: (a) human-being and (b) E.
li.)

jannaschii.)

Figure 6 Computed scores using Bhattacharyya distance
measure (B) versus the pointer-positions along a test DNA
string made of codon (X), fuzzy (Z) and noncodon (Y)
subspaces illustrate the associated demarcations. Posi-
tions I—VII are transition locales of the codon, noncodon,
and fuzzy parts. The values of B plotted correspond to an
ensemble average of 100 runs. (Test DNA string: (a) Rick-
ettsia prowzekii and (b) M. jannaschii.)
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Figure 7 Illustration of a fuzzy subspace (Z) subjected
to a fine search and scored for codon—noncodon charac-
teristics across the differential blocks (Dd) within the
subspace Z. The set of scores obtained and normalized
between 0 and 1 aremapped as tuples (and are defuzzified
as illustrated in Fig. 8 so as to ascertain the centre of
moment location of codon—noncodon delineation bound-
ary (within the subsequence Z).
All the simulations indicated above were per-
formed using the algorithms and pseudocodes indi-
cated in this study and applied to real-world DNA
(codon statistics) data pertinent to human-being as
well as a set of three bacterial species (E. coli, R.
prowzekii andM. jannaschii), the codon statistics of
which are available in [17]. Computations on sym-
Figure 8 Simulated results on fine-search scores obtained
human DNA sequence (constructed in binary form). The scores
defined in the text. The scored values are attributed with tuple
slant-lines constructed based on linear membership functio
maximum score intercept on the ordinate to the minimum
scores obtained over repeated simulation runs ( p—p)fz: defuzz
noncodon demarcation. (It is shown as an error-bar obtained
bolic DNA representations were done using relevant
codes written in C (ANSI) with some C++ object-
oriented elements. These computations were
mostly executed on a Sun Solaris 8 System compiled
on a Sun Workshop 64-bit C++ compiler. The correla-
tion measure based scoring on a binary sequence
was done on a PC platform using MatLabTM/C com-
piler. The simulated results as presented in Figs. 3—6
and 8 (with relevant legends and figure titles) expli-
citly give details on the data used and the computa-
tional outcomes. The running times ranged from 20
to 30 s for a sequence of 6000 codons. Presented in
Table 2 is a summary of results extracted from the
computed results pertinent to the symbolic DNA
representations. The simulations were performed
over 100 ensemble runs in obtaining scores in the
differential blocks using different seeds in emulat-
ing the relevant codon statistics. (The listed defuz-
zified scores in Table 2 correspond to mean values of
such ensemble runs.)

Scoring computation using correlation measure:
this simulation is done on a DNA sequence taken in a
binary format. In a representative simulation, the
parameters used are as follows: DNA type — human-
being; length of total DNA sequence (containing X, Y,
and Z strands): 6400 bases; number of subspaces:
100 (each containing 64 bases); and, three locations
of Xbs (Csub): 0�1600, Ybs (NCsub): 1600—4800, and
Zbs (fSub): 4800—6400 subspaces along the sequence
are constructed. (The subscript ‘‘bs’’ explicitly
denotes the binary format of the sequence.)
on differential blocks across the fuzzy region (Z) of the
correspond to correlationmeasure for a binary sequence as
s and the results are defuzzified as follows: (I) Ensemble of
n: for a given simulation-run, this slant-line joins the
score (zero value) across the subspace; (II) Ensemble of
ified value of the pointer-positions specifying the codon—
from ensemble results.)
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Table 2 Computed results pertinent to human and bacterial DNAs on the percentage deviations (D%) of delineation
boundaries in the test fuzzy subsequences (the results correspond to defuzzified centroid values, ( p—p)fz determined
as per F-, J- and B-metrics and presented relative to the mid-pointer-position ( p—p)mid in each subsequence:
D = [(( p—p)mid � ( p—p)fz)/( p—p)mid] � 100%).

Metrics Human-being E. coli R. prowzekii M. jannaschii

Centroidal
position
( p—p)fz

D% Centroidal
position
( p—p)fz

D% Centroidal
position
( p—p)fz

D% Centroidal
position
( p—p)fz

D%

Fuzzy subsequences–—fSub1: 1600—3200 and fSub2: 9000—10600
fSub1: mid-position, ( p—p)mid = 2400
F 2256 +6.00 2243 +6.50 2247 +6.40 2259 +5.90
J 2197 +8.50 2180 +9.10 2175 +9.40 2187 +8.90
B 2250 +6.30 2250 +6.30 2252 +6.20 2251 +6.20

fSub2: mid-position, ( p—p)mid = 9800
F 9744 +0.57 9758 +0.43 9753 +0.48 9823 �0.23
J 9814 �0.14 9807 �0.07 9824 �0.24 9820 �0.20
B 9750 +0.51 9750 +0.51 9749 +0.52 9749 +0.52

(1) Scored and defuzzified values using, F: Fisher metric, J: Jeffery’s (symmetrized KL) measure and B: Bhattacharyya distance. (2)
The fuzzy scores computed correspond to average of 100 ensemble runs using different seeds on the codon statistics simulated.
8. Concluding remarks

The study addressed here was motivated to seek a
strategy that enables identifying the delineation or
border separation between codon and noncodon
regions in a massive stretch of DNA chain. Specifi-
cally, the work considers the situation in which the
delineating boundary in question (denoted as (p—
p)fz of pointer-positions along the test sequence) is
submerged in a subspace of a DNA sequence; and, in
that subspace the codon and noncodons exist as
overlapped and ambiguous (fuzzy) entities. Such
fuzzy considerations for the inference strategy pur-
sued are novel and unexplored hitherto. Ascertain-
ing such a boundary is a practical need in the state-
of-the-art bioinformatics. Relevant effort refers to a
feature classification problem (and assessing the
accuracy of such prediction algorithms for classifi-
cation purposes is elaborated in [33]).

Commensurate with the scope of IT-considera-
tions vis-à-vis molecular biology indicated in the
introductory section, the need for information-the-
ory (in Shannon’s sense) and using it in fuzzy
domains of bioinformatics is the driving impetus
behind this paper. That is, considered here is an
effort to fuse the concepts of ITand fuzzy logic so as
to evolve appropriate metrics that are useful in
bioinformatic efforts. The efficacy of the proposed
methods and the success of using the metrics devel-
oped can be observed from the simulation results
obtained. For example, delineation of boundaries
across the subspaces is distinctly made feasible by
the proposed metrics and the algorithms pursued as
could be evinced from the graphical details pre-
sented in Figs. 3—6. Further, referring to Table 2,
the different measures adopted consistently yield
results on the delineation boundary on test sub-
spaces that are closely located (with respect to a
reference pointer-position) within a deviation less
than 10%. The ensemble of runs performed has also
given consistent results affirming the procedure
adopted.

The procedure to apply IT concepts and fuzzy
considerations upon a DNA sequence taken in binary
format as indicated in this paper is again a novel
approach. Analyzing a fuzzy binary sequence depict-
ing a DNA chain is rather new and unexplored (as far
as the authors know of). Corresponding application
of a correlation measure, such as the Hamming
distance, is again an approach perceived in the IT
framework. This contemporary pursuit allows a
similarity/dissimilarity comparison of DNA seq-
uences taken in binary format (in lieu of traditional
symbolic format of such sequences). The efficacy
of this new strategy is evident in yielding results
within the span of a short error-bar on ( p—p)fz
over an ensemble of simulation runs as shown in
Fig. 8. The scope of this study still has open-ques-
tions on applying exhaustively all other IT-metrics
(such as the ones explicitly used in this paper as well
as those indicated in the relevant literatures
[23,26]) for bioinformatic sequence data analysis
problems.

Appendix A

If-then or else statements on 212 = 4096 sets ofQ-
values (ED-measures) for the base-phase combina-
tions across the entire DNA sequence
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1. If (QSampleA0 = snc) and (QSampleT0 = snc) and
(QSampleC0 = snc) and (QSampleG0 = snc), . . ., and
(QSampleG2 = snc), then output) snc

2. If (QSampleA0 = sc) and (QSampleT0 = snc) and
(QSampleC0 = snc) and (QSampleG0 = snc), . . ., and
(QSampleG2 = snc) then, output) snc

3. . . .
4. . . .
�
�
�

64. If (QSampleA0 = sc) and (QSampleT0 = sc) and
(QSampleC0 = sc) and (QSampleG0 = sc), . . ., and
QSampleG2 = snc then, output = sfz
�
�
�

4095. . . .
4096. If (QSampleA0 = sc) and (QSampleT0 = sc) and

(QSampleC0 = sc) and (QSampleG0 = sc), . . ., and
(QSampleG2 = sc) then, output = sc
Appendix B

Pseudocode on decision-logic algorithm for
coarse delineation of codon/noncodon sections
across the test DNA sequence

Inputs
TOT_MIXED_CODON_SEQ_SIZE
 generation of random sequence/
string according to the codon statistics
depicting the probability of occurrence
of each nucleotide for the DNA of the test
organism
 creation of test sequence for
analysis

Initialise: pointer position 0
Compute: fc = P1x (codon occurrence
frequency)
 for pointer positions (0 to TOT_
MIXED_CODON_SEQ_SIZE), count the bases
and calculate probabilities (fc) for each
sequence block for (A0, T0, C0, G0, . . .,
A2, T2, C2, G2)
 calculate probabilities for the
entire sequence

Compute: Q-values
 using the average probabilities,
compute theta (Q) for all runs for A0, T0,
C0, G0, . . ., A2, T2, C2, G2 on a per block
basis of the sequence
 Euclidian distance measures
(Q-values) taken in a normalised scale of
0 to 100% correspond to the following:
Q = 0 refers to the probability
distribution of the population (scanned
with pointer positions)is uniform with
fnc = P2y (noncodon occurrence frequency =
1/64). Q = 100% refers to the probability
distribution of the population (scanned
with pointer positions)refers to codon
statistics with fc = P1x (that is, codon
occurrence frequency computed)

If-then . . . or else rule:  (Table 2)
 for each block compute the outputs
of 4096 groups of if. . .else rules:

If majority of score of
if. . .else rules is codon, then output
function should be codon rule

If majority of score of
if. . .else rule is noncodon, then output
function should be noncodon

Or else, output member
function should be fuzzy rule

Write:
 display fuzzy decision values for
each block scanned by the pointer
 establish X, Y and Z domains

End
Appendix C

Fine-search of codon/noncodon delineation
in the fuzzy space (Z) using Fisher discriminant
metric

Input:  fuzzy domain (Z) identified and
extracted as per the decision algorithm
of Appendix B

Initialise: pointer position in the
fuzzy

domain (Z) 0
Compute:  step 1

 reference subspaces XR and YR
in the fuzzy domain are scanned across
their entire set of respective
differential event-spaces; and, for each
event-space (differential window), the
score of numerical count of bases
corresponding to the base-phase
combinations is computed

Compute:  step 2
 mean of all twelve measurements

(of the base-phase set) is determined
for each event-space (of the differential
window subjected to scoring) across the
aligned pair of reference blocks; and,
the difference in each measurement
pertinent to the two blocks is computed.
The results are then stored as a
twelve-element difference vector set

Compute:  step 3
 a covariance matrix for all

the twelve measurements is obtained and
inverted
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Compute:  step 4
 set of coefficients (lr) of

the linear discriminant function is
determined by the product of the inverted
covariance matrix times the twelve
element difference vector indicated in
step (2).

End
Appendix D

Centre-of-area (CoA) or moment method of
defuzzification

Initialise: pointer position 0
Write LS: =

P
Lj

 sum of all pointer-positions
across all the differential windows of
the test fuzzy region (Z)j

Write SS: =
P

Sj
 sum of all scored values (output
values obtained with the test-metric
based computations)of the windows
mapped into corresponding value 0
attributes of the pointer-positions in
the fuzzy region (Z)j

Write SP: =
P

j(Lj) � (Sj)
 sum of the product of Lj and Sj for
all pointer-positions of the fuzzy
region (Z)j

Write YC: = (SP/LS)
 y-coordinate of the centroid of
the fuzzy region, (Z)j

Write XC: = (SP/SS)
 x-coordinate of the centroid of

the fuzzy region, (Z)j
End
Appendix E

Correlation-metric-based assessment of codon—
noncodon delineation in the fuzzy subspace

Input:  invoke the subspace
strings Xbs, Ybs and Zbs

Initialise:
 The binary subspace

strands Xbs, Ybs are divided into blocks
of differential windows and aligned
with a fuzzy subspace Zbs. (The size of
the differential block decides the
resolution and accuracy of the final
result)

Compute:
 computation performed

refers to finding the score that informs
the relative profile of the block being
a codon or a noncodon in each differential
window. The scoring strategy, namely,
assessing the correlation measure R
corresponds to the Hamming distance equal
to the difference between the level of
approval (meaning number of 0s) and the
level of disapproval (meaning number of
1s) counted in the outcomes of a
modulo-2 operation, Zbs � Ybs [13]

Compute:
 scores obtained for each

differential window are normalized with
respect to the maximum value along the
strand. The normalized score (in the
scale of 0—1) is represented in terms
of tuples corresponding to some
membership levels, (based on subjective
reasoning expressed in linguistic
terms). For example, the tuples can be
specified as three levels such as:
(0—0.6): Low; (0.6—0.8): Medium; and,
(0.8—1): High. (Here, the linguistic
descriptions, namely, {low, medium, high}
are such that, the relative score of
the highest value (equal to 1) conforms
to ‘‘all-codon’’ conditions and the
lowest value of the score (equal to 0)
refers to an ‘‘all-noncodon’’ condition)

Compute:
 Next, the scores specified

in their tuples across the differential
windows are subjected to defuzzification
procedure using the centroid method; and,
a horizontal line is drawn through the
centroid value of the score. Assuming a
linear membership function across Zbs,
a slant line is then drawn from the
highest score value to the lowest (zero)
score value; The intersection of the
horizontal line and the slant line
defines the delineation point, (p—p)fz

End
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