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Abstract

This paper deals with the design of feedback quantizers to encode plant output measurements
in networked control systems with data-rate constrained channels. Starting form a nominal design
made under the assumption of transparent communication links, we show how to design a feedback
quantizer so as to systematically reduce the impact of quantization on closed loop performance. To
obtain our results, we model quantization errors as additive white noise with a signal-to-noise ratio
constraint. As a byproduct, we obtain a simple characterization of the minimal quantizer signal-
to-noise ratio that allows one to design a feedback quantizers that guarantees stability. This bound
depends only upon the plant and controller unstable poles. If the plant is strongly stabilizable,
then the bound is consistent with the absolute minimal data-rate for stabilization obtained in
previous work.

1 Introduction

Standard control theory deals with situations where the communication links between plant and con-
troller can be regarded as transparent (see, e.g., [22,55]). There exist, however, cases where the links in
a control system are far from being transparent and may become bottlenecks in the achievable perfor-
mance. Control systems where this happens are collectively referred to as Networked Control Systems
(NCS’s) (see, e.g., [1,2,27,28] and the many references therein). Clearly, unless the channel character-
istics are explicitly taken into account at the design stage, the performance of an NCS may be far from
optimal and sometimes completely unsatisfactory. The main issues that need to be considered when
dealing with NCS’s include data-rate constraints (i.e., quantization), data loss and random delays. A
unifying framework for the treatment of the general NCS design problem does not exist. Nevertheless,
there has been significant progress in the study of specific situations that focus on subproblems. For
example, data-rate constraints have been studied in [40,42,45,48,60] and design strategies to deal with
quantization have been proposed in, e.g., [21,66]. The issue of data loss has been studied in [33,49,51],
among many others, and delays have been considered in, e.g., [32, 43,58,62].

In this paper we focus on linear time invariant (LTI) plant models, and concentrate on the effects of
quantization on closed loop performance. Within this framework, a key result obtained in [40] relates
the minimal data-rate which is necessary and sufficient to achieve stabilization of an unstable plant,
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to its poles in very simple way. This bound has been linked to information theoretic concepts where
it has been given an interpretation akin to that of entropy (see, e.g., [37, 41, 48]). Furthermore, [7, 8]
established that the minimal data-rate for stabilization is sometimes consistent with minimal signal-
to-noise ratio requirements in standard one-degree-of-freedom control architectures that employ LTI
controllers. More precisely, [7,8] showed that, if the plant is defined in discrete time, has relative degree
one and is minimum phase, then a Gaussian memoryless channel having a signal-to-noise ratio equal
to the lower bound derived in [7, 8] would exhibit a channel capacity equal to the data-rate bound
in [40].1

The results discussed above give absolute lower limits on the admissible channel data-rate which
cannot be by-passed by any control law. It seems, however, quite difficult to obtain practical design
guidelines from considerations such as those in [40, 41, 48]. This has motivated some researchers to
move towards a simplified treatment of quantization. For example, [21] models quantization as a sector
bound uncertainty and employs standard robust control tools. On the other hand, [66] uses a simple
white noise model for quantization errors. The latter model for quantization has close connections
to the signal processing literature, where it has been successfully used to design high performance
quantization schemes (see, e.g., [4, 25,30,36,50]).

In the present work we assume that a controller has already been designed under the assumption
of transparent communication links. However, we subsequently extend the set-up by assuming that
the control loop has to be implemented using a bit-rate limited channel in the plant to controller
communication link. Thus, the plant output measurements have to be quantized prior to transmission.
To that end, we borrow ideas from the signal processing literature and employ a feedback quantizer to
encode the plant output (see, e.g., [30,50]). Using a fixed signal-to-noise ratio additive noise model for
quantization errors, we show how to design the feedback quantizer so as to systematically reduce the
impact of quantization on closed loop performance, as measured by the tracking error variance. We
show via simulations that our approach gives very good results even for bit rates as low as one bit per
sample. We also study stability properties for this linear model. As a byproduct, we obtain a simple
characterization of the minimal quantizer signal-to-noise ratio that allows one to design a feedback
coding system that guarantees stability. This result is expressed in terms of the plant and controller
unstable poles only. For stable controllers, and regardless of the plant zeros or relative degree, our
results suggest a minimal data-rate for stabilization that is consistent2 with the bound in [40].

The idea of designing coding schemes to embellish given controller designs is not new. For example,
our previous work documented in [23] considers a coding scheme that turns out to be a special case
of the one considered here. On the other hand, [53] considers the same coding architecture as the one
studied in this paper, but the design procedure in [53] assumes that quantization effects are relatively
small. The methodology used in the current paper does not require this assumption. Also, the stability
analysis included in the current paper goes beyond the results of [23,53]. Another related line of work
has been developed in [9, 10, 34]. The latter work presents a precise deterministic stability analysis
when the coding system is constrained to be a ∆-modulator (or variations thereof;3 see, e.g., [30]), but
does not address performance issues. Another recent publication closely related to the current paper
is [38]. In that work, the authors propose a coding architecture similar to the one in this paper, but
restrict the quantizers to have infinitely many levels and a prespecified quantization step. The latter
assumptions are not needed here. Interestingly, the optimal coder in [38] (which focuses on minimizing

1If the plant has non-minimum phase zeros or a relative degree greater than one, then the analysis in [7, 8] suggests
that a data-rate strictly greater than the aforementioned bound is necessary.

2in the same sense as the results in [8].
3i.e., unlike our proposal, the general multi-bit case is not treated in [9, 10,34]
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a time domain functional) turns out to have a structure that is a special case of the architecture
considered here.

The remainder of this paper is organized as follows: Section 2 presents the notation employed in the
paper. Section 3 describes the NCS architecture of interest and derives a linear model that is suitable
for analysis and synthesis using linear system theoretical tools. Section 4 studies stability properties
of the linear model, while Section 5 presents the proposed design procedure. Section 6 documents a
simulation study. Concluding remarks are included in Section 7.

2 Notation

We use standard vector space notation for signals, i.e., x denotes {x(k)}k∈N0 . We also use z as both
the argument of the z-transform and as the forward shift operator, where the meaning is clear from
the context. Given any matrix X, (X)H and (X)T denote conjugate transposition and transposition,
respectively. Given any complex scalar x, |x| and x̄ denotes magnitude and complex conjugation,
respectively.

The set of all discrete time real rational transfer functions is denoted by R. We define six subsets
of R as follows: Rp contains all proper transfer functions, Rsp contains all strictly proper transfer
functions, RH∞ contains all stable and proper transfer functions, U∞ contains all matrices in RH∞
that have inverses in RH∞, RH2 contains all stable and strictly proper transfer functions, RH⊥2
contains all transfer functions that have only poles outside the unit circle and are either proper or
improper. For any A(z) ∈ R we define A(z)∼ , A(z−1)T . We say that A(z) ∈ R is unitary if and
only if A(z)∼A(z) = I. We also define {A(z)}|z=∞ , A(∞) = limz→∞A(z).

Every A(z) ∈ R with no poles on the unit circle belongs to L2 in which case we define the 2−norm
of A(z) via (see, e.g., [39])

||A(z)||22 , trace
{

1
2π

∫ π

−π

A(ejω)HA(ejω)dω

}
.

For each such A(z), we can always find A⊥(z) ∈ RH⊥2 and A2(z) ∈ RH2 such that A(z) = A⊥(z) +
A2(z) and, accordingly, ||A(z)||22 = ||A⊥(z)||22 + ||A2(z)||22 (see, e.g., [39]).

Any biproper n× 1 transfer matrix A(z) ∈ RH∞ admits an inner-outer factorization of the form

A(z) = Ai(z)Ao(z),

where Ai(z) ∈ RH∞ is unitary (i.e., Ai(z) is inner) and Ao(z) ∈ RH∞ is a biproper scalar transfer
function, that has no zeros in |z| > 1 (i.e., Ao(z) is scalar and outer). Moreover, if A(z) has no zeros
on the unit circle, then Ao(z) ∈ U∞ (see, e.g., [20]).

Given any wide sense stationary (wss) process x, we denote its power spectral density by Sx(ejω),
its variance by σ2

x and its standard deviation by σx. We note that if, in addition, x has an always
positive rational spectrum, then we can always find a spectral factor Ωx(z) ∈ U∞ such that Sx(ejω) =
Ωx(ejω)Ωx(ejω)H , ∀ω ∈ [−π, π]. We also recall the well known fact that σ2

x = ||Ωx(z)||22 (see, e.g., [56]).

3 Coding for Networked Control Systems

In this paper, we will consider the NCS architecture depicted in Figure 1. In that figure, G(z) is
the SISO plant model, C(z) is a SISO controller, y is the plant output, r is the reference signal, do

3



ch
an

ne
l

Communication link

do

C(z) G(z)

CD
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Figure 1: Considered networked control architecture.

models output disturbances and dm corresponds to measurement noise. Unlike standard non-networked
situations (see, e.g, [22, 55]), the feedback path in Figure 1 comprises a communication channel and a
(source) coding/decoding system (C and D).4 The main focus of the current paper lies in designing this
coding system, having performance in mind. To that end, we utilize as the performance assessment
quantity the stationary variance of the tracking error e, defined via

e , r − y. (1)

We next describe the assumptions that underly our subsequent analysis.

3.1 The nominal design

Since our aim is to design coding systems, we will assume that the controller C(z) in Figure 1 has
been already designed assuming transparent communication links.5 The control loop formed by C(z)
and G(z) when transparent communication links are in place (i.e., when ŷm = ym in Figure 1) will be
referred to as the nominal loop (or nominal design).

For future reference we note that, in the nominal loop,

e = Twe(z)w, (2)

where w ,
[
r do dm

]T ,

Twe(z) ,
[
S(z) −S(z) T (z)

]
, (3)

and S(z) and T (z) are defined via

S(z) , 1
1 + G(z)C(z)

, T (z) , 1− S(z). (4)

The transfer function S(z) is the nominal loop sensitivity function and T (z) is the nominal loop
complementary sensitivity function (see [22]).

In the sequel, we will assume the following:
4In the sequel, we will use the term coding system (or just coder) to refer to both the encoder and decoder in Figure

1.
5This can, of course, be carried out using any standard design tool (see, e.g., [22, 55]).
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Assumption 1 (Plant and nominal design) The plant model belongs to Rsp, whilst the controller,
C(z), belongs to Rp, is non-zero and is such that the nominal loop is stable and well posed (in the
standard sense; see, e.g., [22,55]).

The assumption that the nominal loop is stable and well defined is, of course, sensible in our context
where the coding system is designed a-posteriori. We assume that G(z) is strictly proper for simplicity.
In principle, this can be removed at the expense of additional technical care. On the other hand, the
assumption of C(z) being non-zero discards non interesting situations, where the nominal loop is such
that G(z) is left in open loop (i.e., uncontrolled).

We end this section with a description of the exogenous signals r, do and dm.

Assumption 2 (Signals) The signals r, do and dm are mutually independent scalar zero mean wss
processes, each having a rational power spectral density that, if not identically zero, admits a spectral
factor in U∞.

We note that Assumption 2 is standard (see, e.g, [56]).

3.2 The coding system

In this paper, we will focus on error free bit-rate limited channels. As a consequence, the input to the
channel, i.e., h (see Figure 1), must be quantized prior to transmission. To that end, we will consider
a standard feedback quantizer as depicted in Figure 2 (also known as a noise shaping quantizer; see,
e.g., [30, 50]). In that figure, A(z), B(z) and F (z) are filters in Rp that need to be designed and Q
denotes a uniform quantizer (see, e.g., [25, 30]), i.e.,6

Q(v(k)) , satV

(
∆

⌊
v(k)
∆

⌋
+

∆
2

)
, (5)

where V is the quantizer dynamic range, ∆ , 2V (L− 1)−1 and L is the number quantization levels.
We recall that a quantizer is said to be overloaded if and only if the absolute value of its input is

greater than its dynamic range, i.e., |v(k)| > V for some k ∈ N0. If the quantizer does not overload,
then the quantization noise, defined via

q , h− v, (6)

is such that |q(k)| ≤ ∆
2 for every k.

As already mentioned in Section 3.1, we are interested in designing coding systems for pre-specified
nominal designs. In this setting, it is natural to employ coding systems that, in the absence of channel
artifacts, have unit transfer function. That is, we will utilize coding systems that achieve perfect
reconstruction. In our case, the channel is assumed to be error-free and hence ĥ = h. As a consequence,
it is straightforward to see from Figure 2 that7

ŷm = B(z)A(z)ym + B(z)(1− F (z))q, (7)

6satV (x) , x if |x| ≤ V and satV (x) , x
|x|V if |x| > V ; bxc denotes the integer part of x.

7We note that (7) holds irrespective of the nature of the quantization noise q. Of course, (7) is of no utility, unless q
is guaranteed to have some appropriate properties.
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Figure 2: Considered coding and decoding system.

It follows from (7) that perfect reconstruction is tantamount to having B(z) = A(z)−1 for every z. On
the other hand, in order to have a properly defined feedback loop around the quantizer it is necessary
to have a strictly proper F (z) (see, e.g., Chapter 4 in [44]). We summarize the previous discussion as
follows:

Constraint 1 (Structural constraints on the feedback quantizer) The feedback quantizer fil-
ters are such that B(z) = A(z)−1 and F (z) ∈ Rsp.

Quantization is a deterministic non-linear operation and hence, the exact analysis of quantized
systems is difficult (see, e.g., [16, 26, 40, 47]). It has thus become standard, particularly in the signal
processing literature (see, e.g., [5, 25, 30, 36, 50, 63]), to approximate quantization noise by an additive
white noise source uncorrelated with the input of the quantizer. Here, we adopt this paradigm and
assume the following:

Assumption 3 (Quantization noise model) The quantization noise signal q (defined in (6)) is a
sequence of i.i.d. random variables uniformly distributed in 1

2 [−∆, ∆), and uncorrelated with w.

Note that we do not assume that the quantization noise is uncorrelated with v, which is certainly
not the case since the quantization noise is fed-back to the input of the quantizer and, moreover,
the coding system is inside the main feedback control loop. Instead, we adopt a milder assumption
that requires only uncorrelatedness with the exogenous signals contained in w. We stress that the
previous model is valid only if ∆ is small enough, the quantizer does not overload and v has a smooth
probability density (see, e.g., [4]). These conditions usually do not hold in the case of quantizers that
are embedded in feedback loops (see, e.g., the discussion regarding stand alone feedback quantizers
in [24]). Nevertheless, one can make use of dithered quantizers (see, e.g., [25,65]) to render the model
in Assumption 3 exact provided no overload occurs. Despite the above points, we will see in the
simulation study included in Section 6, that, even if one employs a non-dithered uniform quantizer
with as few as 2 levels, the predictions made using the simple model summarized in Assumption 3 are
surprisingly accurate (see also simulation studies in [17,23,53]).

In order to guarantee that the quantizer does not overload, in principle one needs to consider infinite
quantization levels (or assume that the quantizer input is deterministically bounded, which is seldom
the case in a stochastic framework). In practice, it is standard to choose a dynamic range such that the
probability of overload is negligible (see, e.g, [30]). Indeed, if v is wss and β is any positive real, then
one can always find a finite α such that choosing V = ασv guarantees that the probability of overload
is less than β; α is called the quantizer loading factor.8 With such a choice for the overloading factor,

8For example, if v(k) is Gaussian, then α = 4 guarantees an overload probability of 6.33 · 10−5.
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it is immediate to see that

σ2
v

σ2
q

=
12 · σ2

v

∆2
=

3
α2

(L− 1)2, (8)

where we have used the fact that, according to Assumption 3, σ2
q = ∆2

12 . This justifies the following
additional assumption:

Assumption 4 (Fixed signal-to-noise ratio) For a fixed number of quantization levels, the vari-
ance of the quantization noise is proportional to the variance of the signal being quantized, i.e., the
quantizer has a fixed signal-to-noise ratio γ defined via

γ , σ2
v

σ2
q

. (9)

Assumption 4 is a key constraint. As mentioned before, it allows one to guarantee that the quantizer
dynamic range is always properly scaled. In addition, it has a regularizing effect on the optimization
based design of the coding system. Indeed, if this constraint were not in place (i.e., if q were assumed
to have some prescribed statistics), then it would be optimal to choose F (z) = 0 and A(z)−1 = ε with
ε → 0. This is, of course, not a sensible choice since A(z) and σ2

v grow unbounded when ε → 0.

Remark 1 We would like to stress that, in some situations, quantizer overload may become the dom-
inant quantization effect in feedback schemes. Indeed, quantizer overload may trigger limit cycle os-
cillations that are, of course, not predicted by the linear model for quantization introduced above (see,
e.g., [19,44,47]). As implied by Assumptions 3 and 4, we assume in this paper that quantizer overload is
infrequent enough and, accordingly, that it has no significative effect on overall closed loop performance.
(Careful design of the quantizer loading factor may act as a safeguard against quantizer overload.)

Considering the model for quantization described above, together with the nominal loop description
in Section 3.1, it is easy to derive the linear model shown in Figure 3 for the considered NCS. (Note
that we have made the perfect reconstruction constraint explicit.) In Figure 3, q satisfies Assumptions
3 and 4, and r, do, dm satisfy Assumption 2. We will refer to this model as the linear model. It will be
the basis of the remainder of this paper.

4 Mean Square Stability

In this section we study stability properties of the linear model for the considered NCS derived in
Section 3. In particular, we characterize all filters F (z) and A(z) that lead to stable linear models (in
an appropriate sense) for a given quantizer signal-to-noise ratio γ. As a byproduct, we characterize the
minimal quantizer signal to noise ratio γ that allows one to find F (z) and A(z) such that the resulting
linear model is stable.

We begin by noting that, if x is a n-dimensional vector that contains the states of C(z), G(z),
A(z), A(z)−1 and F (z) (see Figure 3), then the evolution of x can be described by a linear state space
model:

x(k + 1) = Ax(k) + Bww(k) + Bqq(k), x(0) , xo, (10a)
v(k) = Cvx(k) + Dwvw(k) + Dqvq(k), (10b)
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Figure 3: Linear model for considered networked situation.

where A,Bw, Bq, Cv, Dwv and Dqv are matrices of appropriate dimensions that depend on the particular
realizations of C(z), G(z), A(z), A(z)−1 and F (z). Next, since we are considering a stochastic system,
we need an appropriate notion of stability:

Definition 1 (Mean Square Stability [12,13,31]) The linear system in (10) is Mean Square Sta-
ble (MSS9) if and only if there exist a finite µx ∈ Rn and a finite Rx ∈ Rn×n, Rx ≥ 0,10 both not
dependent on the initial state xo, such that11

lim
k→∞

µx(k) = µx, lim
k→∞

E
{

(x(k)− µx(k)) (x(k)− µx(k))H
}

= Rx, (11)

where µx(k) , E {x(k)}.

The next theorem gives necessary and sufficient conditions for MSS in our case:

Theorem 1 (Conditions for Mean Square Stability) If Assumptions 1-4 hold, and xo is an in-
dependent random variable with finite mean and finite variance matrix, then the linear model in Figure
3 is MSS if and only if A(z) ∈ U∞, F (z) ∈ RH2 and

γ > ||T (z) + S(z)F (z)||22 . (12)

Proof: Define Rw as the variance matrix of w. Since the spectral factor of w, Ωw(z), belongs
to RH∞, we lose no generality if we restrict attention to the case where Ωw(z)Ωw(z)∼ = Rw ≥ 0, for
every z (i.e., if we assume that w is white noise). The general case employs the same arguments, but
requires an augmented description of the system that has additional stable modes.

9By a slight abuse of notation we will also use MSS to refer to Mean Square Stability, where the meaning is clear
from the context.

10≥ stands for positive semi-definite.
11E {·} stands for the expectation operator. We also note that the definition of limit implies that these quantities, if

they exist, are unique.
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Consider the state space description of the system under study given by (10). Standard results
allow one to conclude (see, e.g., Chapter 4 in [56]) that under our working assumptions

µx(k) =AkE {xo} (13)

Rx(k + 1, k + 1) = ARx(k, k)AH +
[
Bw Bq

]
Rwq

[
Bw Bq

]H
, (14)

where Rwq is the variance matrix of the vector
[
w(k) q(k)

]T and

Rx(k, k) , E
{

(x(k)− µx(k)) (x(k)− µx(k))H
}

. (15)

Moreover, we also have that

µv(k) = Cvµx(k) (16)

Rv(k, k) = CvRx(k, k)CH
v +

[
Dwv Dqv

]
Rwq

[
Dwv Dqv

]H
, (17)

where µv(k) and Rv(k, k) are defined as µx(k) and Rx(k, k), but considering v instead of x.

• (⇒) If the NCS is MSS, then both µx and Rx ≥ 0 are finite and unique. Therefore, (13) implies
that A must be stable. On the other hand, we also see from (17) that limk→∞Rv(k, k), i.e., the
stationary variance of v, say σ2

v , must be positive semi-definite, finite and unique.

Since the nominal loop is stable, a simple calculation shows that A being stable implies that both
A(z) and A(z)−1 must be stable, and moreover, that F (z) is stable. Of course, both A(z) and
A(z)−1 must be proper and, on the other hand, F (z) is constrained to be strictly proper (recall
Constraint 1). Therefore, it follows that A(z) ∈ U∞ and F (z) ∈ RH2.

If A is stable, then it is easy to see that the stationary variance of v satisfies (see also Section
5.1)

σ2
v = ||A(z)Twym(z)Rw||22 + σ2

q ||T (z) + S(z)F (z)||22 , (18)

where Twym(z) is defined in (30), and where we have used the fact that w is uncorrelated with q
and is such that Ωw(z) = Rw. Using the definition of γ in (18) yields

σ2
v =

||A(z)Twym(z)Rw||22
γ − ||T (z) + S(z)F (z)||22

. (19)

Therefore, we conclude that, provided A is stable, σ2
v being positive semi-definite, finite and

unique is equivalent to (12).

• (⇐) Since the nominal loop is stable, F (z) ∈ RH2 and A(z) ∈ U∞, we have that A is stable.
Therefore, it follows from (13) that µx is finite, unique and well defined.

If (12) holds, then the facts deduced when proving the sufficiency part of this theorem imply
that σ2

v is positive semi-definite, unique and finite. Using the definition of γ, it then follows that
σ2

q is positive semi-definite, finite and unique. Therefore, Rwq is positive semi-definite, unique
and finite and, since A is guaranteed to be stable (see above), then we have that the Lyapunov
equation that describes the limiting value of Rx(k, k) in (14) admits a finite, unique and positive
semi-definite solution (see, e.g., Section 21.1 in [67]). Therefore, we have proven that Rx is as
required. This completes the proof.
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The condition for MSS given in Theorem 1 is deceivingly simple. This is due to the fact that the
nominal loop is assumed stable and we are focusing on coding systems that achieve perfect reconstruc-
tion (recall Section 3.2). It is relevant to note that (12) does not depend on A(z). Therefore, one can
easily characterize the greatest lower bound on γ that allows one to guarantee MSS:

Theorem 2 (Minimal signal-to-noise ratio for MSS) If Assumptions 1-4 hold, and xo is an in-
dependent random variable with finite mean and finite variance matrix, then there exist filters A(z)
and F (z) that allow one to guarantee MSS if and only if

γ > γinf , inf
F (z)∈RH2

||T (z) + S(z)F (z)||22 =

(
n∏

i=1

|pi|2
)
− 1, (20)

where {pi}i∈{1,··· ,n} denotes the set of unstable poles of G(z)C(z).

Proof: It suffices to compute infF (z)∈RH2 ||T (z) + S(z)F (z)||22 (see Theorem 1). To that end,
we employ the techniques described in detail in, e.g., [8, 39, 64]. We first note that F (z) ∈ RH2 ⇔
Q(z) , zF (z) ∈ RH∞. Define

ξS(z) =
n+

p∏

i=1

1− zp̄i

z − pi
, (21)

where {pi}i∈{1,··· ,n+
p } denotes the set of non-minimum phase zeros of S(z) that lie strictly outside the

unit circle (i.e., the unstable poles of G(z)C(z) outside the unit circle). It is clear that ξS(z) ∈ RH⊥2 ,
is unitary, and is such that the transfer function ξS(z)S(z) belongs to RH∞, is biproper and has as
non-minimum phase zeros the zeros on the unit circle of S(z) (i.e., the poles on the unit circle of
G(z)C(z)). It thus follows that

||T (z) + S(z)F (z)||22 =
∣∣∣∣1− S(z) + S(z)z−1Q(z)

∣∣∣∣2
2

=
∣∣∣∣ξS(z)− ξS(z)S(z) + ξS(z)S(z)z−1Q(z)

∣∣∣∣2
2

= ||ξS(z)− ξS(0)||22 + ||zξS(0)− zξS(z)S(z) + ξS(z)S(z)Q(z)||22
= ||ξS(z)− ξS(0)||22 + ||ξS(0)− ξS(∞)||22 +

||z (ξS(z)S(z)− ξS(∞))− ξS(z)S(z)Q(z)||22 , (22)

where we have used orthogonal decompositions in L2, the fact that both ξS(z) and z are unitary,
the fact that Assumption 1 implies S(∞) = 1, and basic properties of the 2-norm. By construction,
z (ξS(z)S(z)− ξS(∞)) ∈ RH∞ and ξS(z)S(z) is invertible in RH∞ except for zeros on the unit circle.
Elementary results (see, e.g., Chapter 6 in [64]) allow one to conclude from (22) that

inf
F (z)∈RH2

||T (z) + S(z)F (z)||22 = ||ξS(z)− ξS(0)||22 + ||ξS(0)− ξS(∞)||22
= 1 + 2ξS(0)2 − 2ξS(0)ξS(∞) + ξS(∞)2

− 2Re
{

1
2π

∫ π

−π

ξS(ejω)ξS(0)Hdω

}
. (23)

10



Use of the Residue Theorem and some simple algebra yields the desired result. ¤¤¤

Theorem 2 states a precise condition that the quantizer signal-to-noise ratio γ has to satisfy in
order to be able to find a coding system that, when inserted in the feedback path of a stable nominal
loop, guarantees the MSS of the resulting linear model. The bound on γ depends only on the unstable
poles of G(z)C(z), i.e., on the unstable poles of the plant and controller. If the plant model is strongly
stabilizable (i.e., can be stabilized using a stable controller; see, e.g., [18]), then employing a stable
controller in the nominal loop allows one to find a feedback coder capable of stabilizing the resulting
linear model if and only if

γ >

(
nG∏

i=1

|pGi
|2

)
− 1, (24)

where {pGi}i∈{1,··· ,nG} denotes the set of unstable poles of G(z). We note that the same conclusion
applies if the controller is stable except for poles on the unit circle (e.g., controllers with integral
action).

If we fix F (z) = 0, then γ must satisfy γ > ||T (z)||22, which is a fixed constraint in our framework.
If it were possible to redesign the controller under the constraint F (z) = 0, then one can use the results
in [8] to establish that the admissible signal-to-noise ratio must satisfy

γ >

(
nG∏

i=1

|pGi |2
)
− 1 + ∆G, (25)

where ∆G is non-negative and depends on the non-minimum phase zeros and on the relative degree
of the plant model G(z) (∆G = 0 if and only if G(z) is minimum phase and has relative degree equal
to one). We thus conclude that the inclusion of the proposed coding system allows one to reduce the
requirements on the quantizer signal-to-noise ratio, at least for strong stabilizable plants (regardless
of the plant zeros or relative degree). This reduction may be very significative if, e.g., the plant has
high relative degree. This is an important indication of the benefits that coding brings to networked
control situations. A question that remains open, however, is whether or not there exist different
coding architectures that allow one to recover (24) for any plant.

Remark 2 (Relationship to prior work) In [8] it is proved that (25) is the minimal signal-to-noise
ratio that allows one to find one-degree-of-freedom controllers that stabilize a given LTI plant model
over an additive noise channel with a power constraint. In a second step, the authors show that a
Gaussian memoryless channel, with a signal-to-noise ratio γ that satisfies (25), would have a capacity
Cap (see, e.g., [14]) that satisfies

Cap =
1
2

log2 (1 + γ) >

nG∑

i=1

log2 |pGi |+
1
2

log2

(
1 +

∆G∏nG

i=1 |pGi |2
)
≥

nG∑

i=1

log2 |pGi | , Rinf , (26)

where Rinf is the minimal data-rate which is necessary and sufficient to stabilize an LTI system over
an error-free bit-rate limited channel [40]. Equality in (26) is achieved if and only if the plant is
minimum phase and has a relative degree equal to one. These results suggest that signal-to-noise ratio
requirements in LTI one degree-of-freedom control loops are, for a restricted class of plants, consistent
with the minimal data-rate requirements of [40]. If the plant has non-minimum phase zeros, or has
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a relative degree larger than one, then ∆G > 0 (see (25)). It thus follows that, in these situations,
data-rate requirements suggested by signal-to-noise ratio considerations may be more demanding than
those in [40].

Our results can be applied to the channel model in [8] as well, provided error free feedback (with a
unit delay) is available from the channel output to the channel input.12 When doing so, it turns out
that (24) is consistent (in the sense described above) with the minimal data-rate derived in [40]. Our
results holds even if the plant model has arbitrary relative degree and arbitrary zeros, as long as G(z)
is strongly stabilizable. We thus conclude that, within the LTI framework, the use of feedback coding
is key to achieve (24) and, accordingly, key to make signal-to-noise ratio requirements consistent with
the results in [40]. We stress that the issue of existence of feedback from the channel output to the
channel input is inconsequential to the set-up used in [40] because the channel is error free, as in our
case. (Note that the assumption of channel feedback has been explicitly made for NCS’s with stochastic
channels (see, e.g., [3,59,61]) again recovering the results in [40]. If channel feedback is removed from
the analysis of [59,61] then the minimal data-rates for stabilization obtained do not necessarily coincide
with those in [40] (see Section VI in [60])).

5 Design for Performance

In this section we go beyond stability and focus on how to actually design a feedback coding system that
minimizes the impact that the communication channel has on closed loop performance, as measured
by the steady state variance of the tracking error.

5.1 Problem definition

The purpose of this section is to define the performance goals of interest in a precise way. To that
end, we consider the linear model in Figure 3. Straightforward analysis reveals that the tracking error
obeys

e = Twe(z)w + T (z)A(z)−1(1− F (z))q. (27)

Therefore, if the linear model is MSS and Assumptions 2 and 3 hold, then the stationary variance of
e exists and is given by

σ2
e = ||Twe(z)Ωw(z)||22 + σ2

q

∣∣∣∣T (z)A(z)−1(1− F (z))
∣∣∣∣2

2
, (28)

where Ωw(z) is a spectral factor of the power spectral density of w. Since Assumption 4 holds, σ2
q is

not a given constant; indeed, it depends on the variance of v. Proceeding as above (and using the same
assumptions), it follows from Figure 3 that

v = A(z)Twym(z)w − (T (z) + S(z)F (z))q, (29)

where

Twym(z) ,
[
T (z) S(z) −S(z)

]
, (30)

12The authors of [8] exclude channel feedback from their setting.
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and, accordingly,

σ2
v = ||A(z)Twym(z)Ωw(z)||22 + σ2

q ||T (z) + S(z)F (z)||22 . (31)

Using (9) and (31) in (28), it follows that

σ2
q =

||A(z)Twym
(z)Ωw(z)||22

γ − ||T (z) + S(z)F (z)||22
, (32)

σ2
e = ||Twe(z)Ωw(z)||22 +

||A(z)Twym
(z)Ωw(z)||22

∣∣∣∣T (z)A(z)−1(1− F (z))
∣∣∣∣2

2

γ − ||T (z) + S(z)F (z)||22
. (33)

We note that MSS of the linear model guarantees that γ−||T (z) + S(z)F (z)||22 > 0 and, consequently,
σ2

q ≥ 0, as expected.
We note that, since C(z) is assumed to be given, the choice of the coding parameters (i.e., A(z)

and F (z)) affects only the second term in (33), which we denote as

J(A(z), F (z)) ,
||A(z)Twym(z)Ωw(z)||22

∣∣∣∣T (z)A(z)−1(1− F (z))
∣∣∣∣2

2

γ − ||T (z) + S(z)F (z)||22
. (34)

Accordingly, we can state the problem of interest as follows:

Problem 1 (Main problem) Given a fixed γ ∈ (γinf ,∞), a controller C(z) and a plant G(z) that
satisfy Assumption 1, and exogenous signals satisfying Assumption 2, find Jopt defined via

Jopt , inf
A(z)∈U∞

F (z)∈RH2

||T (z)+S(z)F (z)||22<γ

J(A(z), F (z)) (35)

and filters A(z) and F (z) that achieve Jopt (or approximate Jopt arbitrarily well).

We note that all constraints in the formulation of Problem 1 stem from MSS considerations, as
discussed in Theorems 1 and 2. We will use the term admissible A(z) (resp. admissible F (z)) to refer
to a filter A(z) (resp. F (z)) that satisfies the constraints in Problem 1.

Problem 1 is non-trivial. Indeed, the much simpler problem of designing A(z) and F (z) so as to
minimize the steady state variance of ŷm − ym, when G(z) = C(z) = 0 and dm = r = 0 has been only
recently solved exactly (see [17]). This is quite surprising given the fact that feedback quantizers have
been studied extensively (see, e.g., [30,50,57]). Unfortunately, the technique employed in [17] does not
seem to yield an explicit characterization of the solution in the present situation. Instead of pursuing
that line of reasoning here, we will derive an iterative approach that is guaranteed to yield performance
that is arbitrarily close to optimum.

Before describing the proposed design procedure, we note that the following holds:

Fact 1 (Asymptotic behavior of Jopt) Assume that the conditions of Problem 1 hold. Then:

1. If γ → γinf , then Jopt →∞ (unless all exogenous signals have zero spectral density, in which case
J(A(z)F (z)) = 0 for every admissible A(z) and F (z)).
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2. If γ →∞, then Jopt → 0.

Proof:

1. By definition of Jopt, we have that γ → γinf ⇒ ||T (z) + S(z)F (z)||22 → γinf . Thus Jopt → ∞
unless either ||T (z)A(z)(1− F (z))||22 = 0 or ||A(z)Twym(z)Ωw(z)||22 = 0. Since A(z) ∈ U∞ and
Assumption 1 holds, the result follows upon noting that infF (z)∈RH2 ||T (z)A(z)(1− F (z))||22 > 0.

2. Fix A(z) ∈ U∞ and F (z) ∈ RH2. In these conditions, γ →∞⇒ J → 0 and hence, Jopt → 0.

¤¤¤

As a consequence of Fact 1, we will omit from our subsequent presentation an explicit analysis of
the cases γ →∞ or γ → γinf . (The reader can easily verify that the results below are consistent with
Fact 1 by letting γ →∞ or γ → γinf .)

5.2 Choosing A(z)

We begin by showing how to choose A(z), when an admissible F (z) is given. To that end we define,
for any given admissible F (z),13

J1
opt(F (z)) , inf

A(z)∈U∞
J(A(z), F (z)), (36)

A
F (z)
opt (z) , arg inf

A(z)∈U∞
J(A(z), F (z)). (37)

The next theorem characterizes both J1
opt(F (z)) and A

F (z)
opt (z).

Theorem 3 (Optimal A(z) for a given F (z)) Assume that the conditions of Problem 1 hold and
consider a fixed admissible F (z). If Ωw(z) is not identically zero, then:

1. The minimal value of J is given by

J1
opt(F (z)) =

(
1
2π

∫ π

−π

∣∣T (ejω)(1− F (ejω))
∣∣ √

Twym(ejω)Ωw(ejω)Ωw(ejω)HTwym(ejω)H dω
)2

γ − ||T (z) + S(z)F (z)||22
. (38)

2. The corresponding optimal A(z) satisfies

∣∣∣AF (z)
opt (ejω)

∣∣∣
4

= α

∣∣T (ejω)(1− F (ejω))
∣∣2

Twym(ejω)Ωw(ejω)Ωw(ejω)HTwym(ejω)H
, ∀ω ∈ [−π, π], (39)

where α is any arbitrary positive real.
13See comments in Appendix on the notation arg inf.
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Proof: The definition of the 2−norm allows one to conclude that, for every X(z) ∈ R ∩ L2, the
following identities hold:

||X(z)||22 =
∣∣∣∣X(z−1)T

∣∣∣∣2
2

=
∣∣∣∣
∣∣∣∣
√

X(z−1)T X(z)
∣∣∣∣
∣∣∣∣
2

2

. (40)

Both (38) and (39) follow using (40) and the Cauchy Schwartz inequality in (34) (note that (39)
is always well defined if Assumption 1 holds, and Ωw(z) is not identically zero). To complete the
proof we note that (39) is a condition on the magnitude of the infimal filter A(z). Thus, A

F (z)
opt can

always be approximated, to any desired degree of accuracy, by a rational filter in U∞ as required. ¤¤¤

Remark 3 Of course, assuming that Ωw(z) is not identically zero does not hinder the generality of
Theorem 3 (see Part 1 in Fact 1).

The characterization of A
F (z)
opt (z) given by Theorem 3, although explicit, is usually not satisfied by

any transfer function in U∞. This is due to the fact that, except in very special cases, the 4th root
of the right hand side in (39) is irrational. Nevertheless, as mentioned in the proof of Theorem 3,
it is always possible to find a filter in U∞ that achieves a performance that is as close as desired to
J1

opt(F (z)).14 In practice, it is usually enough to consider reasonably low order filters to approximate

A
F (z)
opt (z) (see also [23]).

5.3 Choosing F (z)

In this section we address the problem of choosing F (z) when an admissible A(z) is given. Consistent
with the notation introduced before,

J2
opt(A(z)) , inf

F (z)∈RH2

||T (z)+S(z)F (z)||22<γ

J(A(z), F (z)) (41)

denotes the minimal value of J when A(z) ∈ U∞ is fixed. We also define

F
A(z)
opt (z) , arg inf

F (z)∈RH2

||T (z)+S(z)F (z)||22<γ

J(A(z), F (z)). (42)

We begin by noting that J2
opt(A(z)) can be written in a simpler form as follows:

Fact 2 (Equivalent formulation for J2
opt(A(z))) Assume that the conditions of Problem 1 hold and

consider a fixed A(z) ∈ U∞. Then,

J2
opt(A(z)) = ||A(z)Twym(z)Ωw(z)||22 inf

γinf≤M<γ

1
γ −M

inf
F (z)∈RH2

J2(F (z))=M

J1(F (z)), (43)

where

J1(F (z)) ,
∣∣∣∣T (z)A(z)−1(1− F (z))

∣∣∣∣2
2
, J2(F (z)) , ||T (z) + S(z)F (z)||22 . (44)

14This is, of course, consistent with the definition of A
F (z)
opt and the definition of arg inf (see Appendix).
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Proof: Using the definition of J and the fact that A(z) is fixed, it is immediate to see that

J2
opt(A(z)) = ||A(z)Twym

(z)Ωw(z)||22 inf
F (z)∈RH2
J2(F (z))<γ

J1(F (z))
γ − J2(F (z))

. (45)

Define a new real variable, M , constrained to belong to [γinf , γ). With this definition, elementary
optimization results (see, e.g., Section 4.1.3 in [6]) allow one to write (45) as

J2
opt(A(z)) = ||A(z)Twym

(z)Ωw(z)||22 inf
F (z)∈RH2

J2(F (z))=M
γinf≤M<γ

J1(F (z))
γ −M

, (46)

where we have used the fact that, by definition of γinf , J2(F (z)) ≥ γinf for any F (z) ∈ RH2. The
result is now immediate. ¤¤¤

Fact 2 is key to derive the main result in this section. Namely, a one parameter characterization
for J2

opt(A(z)) and the corresponding optimal F (z). Towards that goal, we begin by considering an
auxiliary problem. Define the functional

Lε , εJ1(F (z)) + (1− ε)J2(F (z)), (47)

where ε ∈ [0, 1], and

Fε(z) , arg inf
F (z)∈RH2

Lε. (48)

We have the following characterization of Fε(z):

Lemma 1 (Solution to auxiliary problem) Consider Lε defined in (47) and suppose that Assump-
tion 1 holds.

1. If ε ∈ (0, 1), then the infimum in (48) is achievable in RH2 and

Fε(z) = 1− Pε,o(∞)Pε,o(z)−1, (49)

where Pε,o(z) ∈ U∞ is an outer factor of

Pε(z) ,
[√

ε ξT (z)T (z)A(z)−1√
1− ε ξS(z)S(z)

]
(50)

and

ξT (z) , zm

n+
c∏

i=1

1− zc̄i

z − ci
, ξS(z) ,

n+
p∏

i=1

1− zp̄i

z − pi
, (51)

where m is the relative degree of G(z)C(z), {ci}i∈{1,··· ,n+
c } (resp. {pi}i∈{1,··· ,n+

p }) is the set of
non-minimum phase zeros (resp. unstable poles) of G(z)C(z) that lie strictly outside the unit
circle.
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2. If ε = 0, then

F0(z) = 1− (ξS(z)S(z))−1
ξS(∞) (52)

and, if ε = 1, then

F1(z) = 1−A(z) (ξT (z)T (z))−1 {
ξT (z)T (z)A(z)−1

}∣∣
z=∞ . (53)

3. If ε = 0 (resp. ε = 1), then the infimum in (48) is achievable in RH2, if and only if G(z)C(z)
has no poles (resp. zeros) on the unit circle.

Proof:

1. We will proceed as in the proof of Theorem 2 (see also [11]). As before, we define Q(z) ∈ RH∞
via F (z) , z−1Q(z). It is easy to see from (22) that

Lε = (1− ε)
(
γinf + ||z (ξS(z)S(z)− ξS(∞))− ξS(z)S(z)Q(z)||22

)
+

ε
∣∣∣∣T (z)A(z)−1 − T (z)A(z)−1z−1Q(z)

∣∣∣∣2
2

(54)

Moreover, using the same procedure as in the aforementioned proof, it is also clear that
∣∣∣∣T (z)A(z)−1 − T (z)A(z)−1z−1Q(z)

∣∣∣∣2
2

=
∣∣∣∣zξT (z)T (z)A(z)−1 − zξT (z)T (z)A(z)−1Q(z)

∣∣∣∣2
2

=
{
ξT (z)T (z)A(z)−1

}∣∣2
z=∞+

∣∣∣∣z (
ξT (z)T (z)A(z)−1 − {

ξT (z)T (z)A(z)−1
}∣∣

z=∞
)− ξT (z)T (z)A(z)−1Q(z)

∣∣∣∣2
2
, (55)

where we have used the fact that the relative degree and non-minimum phase zeros of T (z) are
the relative degree and non-minimum phase zeros of G(z)C(z), that ξT (z) and z are unitary, and
that, since A(z) ∈ U∞, ξT (z) is such that ξT (z)T (z)A(z)−1 belongs to RH∞, is biproper and
has as non minimum phase zeros the zeros on the unit circle of T (z) (i.e., the zeros on the unit
circle of G(z)C(z)). From (54) and (55) it follows that

Lε = (1− ε)γinf + ε
{
ξT (z)T (z)A(z)−1

}∣∣2
z=∞ + L̂ε, (56)

where

L̂ε , ||W (z)− Pε(z)Q(z)||22 , (57)

Pε(z) (defined in (50)) belongs to RH∞, is biproper, and

W (z) ,
[√

ε z
(
ξT (z)T (z)A(z)−1 − {

ξT (z)T (z)A(z)−1
}∣∣

z=∞
)

√
1− ε z (ξS(z)S(z)− ξS(∞))

]
∈ RH∞. (58)

Define the unitary matrix

φ(z) ,
[

Pε,i(z)∼

I − Pε,i(z)Pε,i(z)∼

]
, (59)
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where Pε,i(z) is an inner factor of Pε(z) and Pε,o(z) is the corresponding outer factor. We note
that, since Assumption 1 holds, Pε(z) has no zeros on the unit circle for ε ∈ (0, 1). Thus, for
those values of ε, Pε,o(z) ∈ U∞.

Pre-multiplying the argument of ||·||22 in (57) by φ(z) it is immediate to see that

L̂ε = ||(I − Pε,i(z)Pε,i(z)∼) W (z)||22 + ||Pε,i(z)∼W (z)− Pε,o(z)Q(z)||22 . (60)

A straightforward calculation shows that

Pε,i(z)∼W (z) = zPε,o(z)− zPε,i(z)∼Pε(∞). (61)

Therefore, orthogonal decompositions as those employed before allow one to write

L̂ε = ||(I − Pε,i(z)Pε,i(z)∼)W (z)||22 + ||Pε,o(∞)− Pε,i(z)∼Pε(∞)||22 +

||z (Pε,o(z)− Pε,o(∞))− Pε,o(z)Q(z)||22 . (62)

Since Pε,o(z) ∈ U∞ the result follows.

2. If ε ∈ {0, 1}, then (54) and (55) yield immediately the results.

3. The result follows upon noting that, by definition of ξT (z) and ξS(z), (ξS(z)S(z))−1 (resp.
(ξT (z)T (z)A(z)−1)−1) belongs to RH∞ if and only if G(z)C(z) has no poles on the unit cir-
cle (resp. zeros on the unit circle).

¤¤¤

The characterization of Fε(z) given in Lemma 1 plays an essential role in our subsequent discussion.
It is worth mentioning that the only critical step when calculating Fε(z) is the inner-outer factorization
of Pε(z). Since Pε(z) has no zeros at infinity (i.e., Pε(z) is biproper), this factorization can be made
with the aid of standard algorithms (see, e.g., [20, 46]).

The next theorem provides a characterization of the optimal F (z) in terms of Fε(z).

Theorem 4 (Optimal F (z) for a fixed A(z)) Assume that the conditions of Problem 1 hold and
consider a fixed A(z) ∈ U∞. Then,

F
A(z)
opt (z) = Fε∗(z), (63)

J2
opt(A(z)) = ||A(z)Twym(z)Ωw(z)||22

J1(Fε∗(z)
γ − J2(Fε∗(z))

, (64)

where15

ε∗ , arg min
ε∈(0,ε̂)

J1(Fε(z))
γ − J2(Fε(z))

. (65)

In (65), ε̂ is defined as follows: If there does not exist ε ∈ (0, 1] such that J2(Fεγ (z)) = γ, then ε̂ = 1.
Otherwise, ε̂ = εγ , where εγ is the unique real in (0, 1] such that J2(Fεγ (z)) = γ.

15We define ε∗ using arg min instead of arg inf to stress that the infimum in (65) is actually achieved in (0, ε̂).
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Proof: We will use the alternative formulation for J in Fact 2.

1. We first show how to solve an auxiliary problem related to the inner optimization problem in
(43). Consider the problem:

inf
F (z)∈RH2

J2(F (z))≤M

J1(F (z)). (66)

The well-known KKT conditions for this problem (see, e.g., [6, 35]) allow one to conclude that
the optimal F (z), say Faux(z), (if it exists) is a critical point of λ1J1(F (z)) + λ2J2(F (z)), where
λ1 + λ2 > 0, λ1, λ2 ≥ 0 and, moreover, λ2(J2(Faux(z)) −M) = 0. It is immediate to see that
this is equivalent to saying that Faux(z) is a critical point of Lε (see (47)), with ε ∈ [0, 1] and
(1− ε)(J2(Faux(z))−M) = 0.

Lε is a strictly convex functional (and so are J1 and J2). Hence, it has an unique critical point
given by Fε(z) (see (48)). Moreover, the set of points in the J1 versus J2 plane defined by
Fε(z), when ε ranges from zero to one, is the set of Pareto optimal points of the multi-objective
problem of minimizing simultaneously J1 and J2 (see, e.g., [6,15]). This set is a (strictly) convex
and decreasing function when J1 is seen as function of J2. Clearly, the Pareto optimal point
corresponding to ε = 1 (resp. ε = 0) is such that J1 is minimum (resp. J2 is minimum).
Thus, by definition of Pareto optimal point, the minimum of J1, when J2 ≤ M is achieved
when J2 = M , provided J2(F1(z)) ≥ M . If J2(F1(z)) < M , then the minimum J1 is achieved
when J2 = J2(F1(z)). As a consequence, the optimal solution of the auxiliary problem is given
by Faux(z) = FεM

(z), where, provided J2(F1(z)) ≥ M , εM belongs to [0, 1] and is such that
J2(FεM

(z)) = M (note that convexity ensures that, in this case, εM is unique). On the other
hand, if J2(F1(z)) < M , then εM = 1.

2. We next show how to exploit the above reasoning to prove the result. We first note that, since
F1(z) optimizes J1, it is of no use to consider values of M such that J2(F1(z)) < M (note also
that M → γinf is optimal for the first optimization problem in (43) and, accordingly, constraining
J2(F1(z)) to be greater than or equal to M does not impede the minimization of J). Thus, Fopt(z)
satisfies

Fopt(z) = arg inf
γinf≤M<γ

M≤J2(F1(z))

1
γ −M

inf
F (z)∈RH2

J2(F (z))=M

J1(F (z)), (67)

Using Part 1 it follows that Fopt(z) = FεM∗ (z) with M∗ such that

M∗ = arg inf
γinf≤M<γ

M≤J2(F1(z))

J1(FεM
(z))

γ − J2(FεM
(z))

, (68)

where εM is guaranteed to exist in [0, 1] (and to be unique). A key feature of this problem is that
the Pareto optimal points of the auxiliary problem considered in Part 1 do not depend on M .
Thus, varying M in [γinf ,min{γ, J2(F1(z))}] is equivalent to just varying εM in [0, min{1, εγ}] (if
εγ [defined in the body of this Theorem] does not exist, then pick εγ = 1). It should be clear
that the structure of the problem is such that M∗ ∈ (γinf , min{γ, J2(F1(z))}). Thus, it suffices
to consider εM ∈ (0, min{1, εγ}). As a consequence, the result follows.
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Theorem 4 provides a one parameter characterization of the optimal F (z) and the corresponding
minimal cost J2

opt(A(z)), for any admissible A(z). The scalar parameter ε∗ can be found using any
standard line search procedure and, as such, its calculation embodies no additional difficulties. This is
reinforced by the fact that the search for ε∗ is made over (0, 1) (and that ε∗ actually exists in (0, 1))
which is precisely the range of values of ε for which Fε(z) is always defined in RH2 (see Lemma 1).

5.4 Design procedure and final remarks

In this section we show how to use the results in Sections 5.2 and 5.3 to design a feedback coding system
in an iterative fashion. Of course, one can always choose to fix one of the coder filters (trivial choices
are A(z) = 1 or F (z) = 0) and then use Theorem 3 or 4 to design the free parameter. Obviously, this
choice will limit the achievable performance. To exploit the full potential of a feedback coding system
we suggest that one uses an iterative algorithm such as the following:

Algorithm 1 (Iterative design procedure) For a given plant and controller satisfying Assumption
1, and a given γ > γinf , proceed as follows:

• Initialization:

– Pick a tolerance ρ > 0, a transfer function A0(z) ∈ U∞ and a transfer function F0(z) ∈ RH2

that is admissible.

– Set A(z) = A0(z), F (z) = F0(z). Set V (0) = J(A(z), F (z)), fix A(z) (or, alternatively, fix
F (z)) and set k = 0.

• Repeat ((k + 1)th iteration):

– Set k = k + 1.

– If at the (k − 1)th iteration A(z) was fixed, then use Theorem 4 to obtain F
A(z)
opt (z). Set

F (z) = F
A(z)
opt (z) and V (k) = J(A(z), F (z)). Fix F (z).

– If at the (k − 1)th iteration F (z) was fixed, then use Theorem 3 to obtain A
F (z)
opt (z). Set

A(z) = A
F (z)
opt (z) and V (k) = J(A(z), F (z)). Fix A(z).

• Until: |V (k)− V (k − 1)|V (k − 1)−1 < ρ.

It should be clear that it is not certain that Algorithm 1 will converge to the global minimum of J .
Nevertheless, it is easy to see that, by definition of A

F (z)
opt and F

A(z)
opt , the algorithm reduces the value

of J at each iteration. Therefore, Algorithm 1 converges, necessarily, to a local minimum. Thus, we
suggest to use multiple starting points so as to find the global minimum. A procedure for getting a
good starting point is mentioned below.

In general, A
F (z)
opt (z) 6= 1 and F

A(z)
opt (z) 6= 0. Thus, fixing A(z) or F (z) and optimally choosing

the other filter, will obviously provide a coding system that enhances closed loop performance when
compared with a non-coded networked situation.16 It is also clear that the use of Algorithm 1 allows

16Provided both situations us the same channel, the same quantizer and the same loading factor.

20



one to design coding systems that will always outperform coding systems that have been designed
using the guidelines in our earlier work described in [23]. This is a consequence of the fact that [23]
constrains F (z) to be identically zero.

A more interesting discussion arises if one compares the results in this paper with the results in [53].
In the latter work, it is assumed that γ is sufficiently high so as to be able to approximate J in (34) by

J∞ ,
||A(z)Twym(z)Ωw(z)||22

∣∣∣∣T (z)A(z)−1(1− F (z))
∣∣∣∣2

2

γ
. (69)

In order to minimize J∞ it suffices to choose A(z) so as to minimize ||A(z)Twym(z)Ωw(z)||22 and, in
a second stage, to choose F (z) as the minimizer of

∣∣∣∣T (z)A(z)−1(1− F (z))
∣∣∣∣2

2
[53]. A problem with

the above approach is that deciding, a priori, which γ’s are high enough seems to be impossible.
In particular, since the procedure in [53] does not take the constraint γ − ||T (z) + S(z)F (z)||22 > 0
explicitly into account, the proposed choice for F (z) may be not admissible or may be such that
J(A(z), F (z)) → ∞. (Needless to say, this drawback is explicitly avoided in the current paper.) It is
also clear that choosing A(z) as in [53] and, then, using Theorem 4 to choose F (z) will always lead
to a feedback coder that achieves a tracking error variance that is lower than the one achieved by the
filters proposed in [53]. Of course, if the filters suggested in [53] are feasible, then they may provide a
good starting point for Algorithm 1.

6 Design Example

This section documents a design study that illustrates the results in this paper. We consider a very
simple case that, nevertheless, will allow us to present the main features of our proposal.

We consider a nominal loop with plant and controller given by

G(z) =
1

z − 0.8
, C(z) =

z − 0.8
z − 1

. (70)

The measurement noise and output disturbance are assumed zero, whilst the reference is considered
to have a power spectral density with spectral factor

Ωr(z) =
0.02z

z − 0.9
. (71)

The quantizer loading factor is fixed at 4 in all cases,17 and the number of quantization levels, L , 2b,
ranges between L = 21 and L = 28. Since we do not consider the use of channel coding schemes (e.g.,
entropy coding; see [9, 14]), b corresponds to the rate at which data is sent through the channel (in
[bit/sample]).

Figure 4 shows the steady state tracking error variance σ2
e (see (33)) as a function of the number of

iterations in Algorithm 1 for two representative values of the quantizer signal-to-noise ratio: γ = 1.6875
and γ = 9.1875, which correspond to b = 2 and b = 3, respectively. Cases 1 and 2 refer to iterations
that start with A0(z) = 1 and F0(z) = 0. In Case 1 we initially fixed A(z), whereas in Case 2 we start
fixing F (z). Case 3 refers to iterations that start with the choices suggested in [53]. We note that γ
has to be greater than 4.42 in order for the proposal in [53] to be admissible. (Accordingly, we omitted

17This corresponds to the well known 4σ rule; see [30].
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Figure 4: Tracking error as function of the number of iterations in Algorithm 1 (see text for details).

Case 3 in Figure 4 when γ = 1.6875.) It can be seen that rapid convergence of Algorithm 1 occurs and,
more interestingly, that the limiting performance does not depend on the order in which the filters are
calculated or on the initial condition. Thus, local minima related issues do not seem to play a role in
this example.

In Figure 4 we have identified three points. The first of these (point (1)) refers to the performance
achieved without coding (F (z) = 0 and A(z) = 1). The second (point (2)) refers to the performance
achieved when employing the optimal coding system proposed in [23]. The third (point (3)) refers to
the performance achieved using the approximately optimal filters described in [53].

The results show that coding is, indeed, necessary to achieve the best possible loop performance.
(Compare point (1) with, e.g., the value of σ2

e for 10 iterations.) It is also possible to see that use of
Algorithm 1 yields coding systems that perform better than our previous proposals in [23,53], which is
consistent with the discussion at the end of Section 5.4. (Compare points (2) and (3) with the limiting
value for σ2

e .) It is also interesting to mention that, for b > 4, the performance provided by the filters
in [53] is substantially closer to the limiting value of σ2

e than the case shown in Figure 4. This suggest,
as mentioned before, that the filters in [53], when feasible, provide good starting points for the iterative
procedure proposed here.

We end this section by studying the behavior of the tracking error variance as a function of the
channel bit rate b. The results are presented in Figure 5, where “Nominal performance” refers to the
performance achieved by the nominal loop (without quantization), “No coding (empirical)” refers to
simulated results18 when no coding is employed (i.e., when A(z) = 1 and F (z) = 0), “Opt. coding
(empirical)” refers to simulated results obtained with the filters suggested by Algorithm 1 (after 10
iterations), and “Opt. coding (analytical)” refers to the corresponding predictions made using the
simplified noise model for quantization. One can see that, as expected, the effects of quantization
vanish as b →∞. Interestingly, the predictions made using our model turn out to be very accurate for
every bit rate: indeed, for b ≥ 3 the relative errors are of less than 1% and, for b ∈ {1, 2}, the relative
errors are around 8%. (We note that F (z) = 0 turns out to be non-admissible for b = 1. Accordingly,

18All simulations use an actual undithered uniform quantizer with L = 2b levels. For each b, the results correspond to
the average of 200 simulations (each one 105 samples long and using a different reference realization).
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Figure 5: Tracking error as function of the channel bit rate.

we have omitted the non coded results for b = 1.)

7 Conclusions

This paper has presented a methodology to design feedback quantizers that encode plant output
measurements in a networked control situation employing data-rate limited channels. Using a fixed
signal-to-noise ratio additive noise model for quantization, we have shown how to iteratively design
the parameters of a feedback coding system so as to minimize the impact of quantization on the closed
loop tracking error. Our results show that feedback quantization schemes are beneficial when compared
to simpler schemes documented in the literature. An interesting by-product of our results lies in the
characterization of the smallest quantizer signal-to-noise ratio compatible with stabilization. We have
shown that, for a given quantizer signal-to-noise ratio, the class of plants that are stabilizable when
feedback coding is employed is significatively larger than the class of plants that are stabilizable when
no coding is used. This result opens the door to investigating other LTI control and feedback coding
architectures and the associated signal-to-noise ratio requirements.

A very interesting extension of the present work lies in addressing multiple-input multiple-output
problems. In that case, it is worth exploring how networked architectures may help overcoming the
well-known performance limitations that arise when constraining the structure of the controller (see,
e.g., [29, 52]). A second immediate extension lies in the problem of joint controller and coder design.
The study of how to apply similar ideas to the case of channels prone to data loss is also interesting
(see preliminary work in [54]).

A Appendix

Consider a set X and a function J defined on X ⊂ X̂ (and extensible to X̂ ). If infX∈X J(X) exists
and infX∈X J(X) is achievable in X , i.e., if ∃ X∗ ∈ X such that J(X∗) = infX∈X J(X), then Xopt ,
arg infX∈X J(X) = X∗. On the contrary, if @ X∗ ∈ X such that J(X∗) = infX∈X J(X), then Xopt

defined as above should be understood as Xopt = limn→∞Xn, where {Xn}n∈N is a sequence in X
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(whose limit belongs to X̂ ) such that limn→∞ J(Xn) → infX∈X J(X). Therefore, if we write Xopt = X̂

and X̂ 6∈ X , it is implicit that one can find a sequence {Xn}n∈N as above. In these cases, it is clear
that one can always pick an X ∈ X such that J(X) is as close to infX∈X J(X) as desired.
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[47] D.E. Quevedo, G.C. Goodwin, and J.A. De Doná. Finite constraint set receding horizon control.
International Journal of Robust and Nonlinear Control, 14:355–377, March 2004.

[48] A.V. Savkin. Analysis and synthesis of networked control systems: Topological entropy, observ-
ability, robustness and optimal control. Automatica, 42:51–62, 2006.

[49] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S.S. Sastry. Foundations of control and
estimation over lossy networks. Proceedings of the IEEE, 95(1):163 – 187, January 2007.

[50] R. Schreier and G.C. Temes. Understanding Delta Sigma Data Converters. Wiley-IEEE Press,
2004.

26



[51] P. Seiler and R. Sengupta. An H∞ approach to networked control. IEEE Transactions on Auto-
matic Control, 50(3), 2005.

[52] E.I. Silva, G.C. Goodwin, and D.E. Quevedo. On networked control architectures for MIMO
plants. In Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008.

[53] E.I. Silva, G.C. Goodwin, D.E. Quevedo, and M.S. Derpich. Optimal noise shaping for networked
control systems. In Proceedings of the European Control Conference, Kos, Greece, 2007.

[54] E.I. Silva, D.E. Quevedo, and G.C. Goodwin. Optimal coding for bit-rate limited networked
control systems in the presence of data loss. In Proc. of the 46th IEEE Conference on Decision
and Control, New Orleans, USA, 2007.

[55] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. Wiley,
New York, 1996.
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