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Abstract

The objective of this note is to report some potentially useful mutual information inequalities.

1 Preliminaries

Throughout this section, and unless otherwise stated, x, xi, i ∈ N0, y, z and n are continuous random
variables taking values in appropriate subsets of Rn. We assume that they all have well defined
probability density functions (PDFs), which we denote by fx, fxi , fy, fz and fn, respectively, and well
defined joint PDFs denoted by fxy, fxz, etc.1 We also use the notation fx|y to refer to the conditional
PDF of x, given y. All definitions and results in this section are standard and can be found in [1].

Definition 1 (Differential entropy) The differential entropy of x is defined via2

h(x) , −
∫

fx(u) ln fx(u)du. (1)

The conditional differential entropy of x, given y, is defined via

h(x|y) , −
∫

fxy(u, v) ln fx|y(u, v)du dv. (2)

¤¤

The differential entropy has the following properties:

Fact 1 (Properties of h)

• h(x|y) ≤ h(x) with equality if and only if x and y are independent.

• h(x + y|y) = h(x|y).

• If a ∈ R \ {0}, then h(ax) = h(x) + ln |a|.
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1We will seldom need to make a distinction between a random variable and its realization values. Thus, we introduce

at this moment no additional notation for the values of x, y, z or n.
2It is understood that the integrals are defined over the support of the functions involved.

1



• h(x0, · · · , xn−1) =
∑n−1

i=0 h(xi|x0, · · · , xi−1) (this property is called chain rule for differential
entropy).

• If x and y are independent, then e2h(x+y) ≥ e2h(x) + e2h(y) (e2h(x) is called entropy power of x.
This property is called entropy power inequality.)

¤¤¤

Definition 2 (Mutual information) The mutual information between x and y is defined via

I(x; y) ,
∫

fxy(u, v) ln
fxy(u, v)

fx(u)fy(v)
du dv (3)

The conditional mutual information between x and y, given z, is defined via

I(x; y|z) ,
∫

fxyz(u, v, w) ln
fxyz(u, v, w)fz(w)
fxz(u, w)fyz(v, w)

du dv dw. (4)

¤¤

Mutual information has the following properties:

Fact 2 (Properties of I)

1. I(x; y) = h(x)− h(x|y) = h(y)− h(y|x) = I(y; x).

2. I(x; y|z) = h(x|z)− h(x|y, z) = h(y|z)− h(y|x, z) = I(y; x|z).

3. I(x; y) ≥ 0 with equality if and only if x and y are independent.

4. I(x, y; z) = I(x; z) + I(y; z|x) ( chain rule of mutual information).

¤¤¤

Definition 3 (Markov chain) The random variables x, y and z are said to form a Markov chain
(in that order) if and only if f(x, z|y) = f(x|y)f(z|y), i.e., if and only if x and z are conditionally
independent given y. If that is the case, we write

x ↔ y ↔ z. (5)

¤¤

Theorem 1 (Data processing inequality) If x ↔ y ↔ z, then I(x; y) ≥ I(x; z). Equality holds if
and only if, in addition, x ↔ z ↔ y. ¤¤¤
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Definition 4 (Divergence between PDFs) The divergence of the distribution of x with respect to
the distribution of y (in short, the divergence between x and y) is defined by3

D(x||y) ,
∫

fx(u) ln
fx(u)
fy(u)

du. (6)

¤¤

Relevant properties of D(·||·) are summarized below:

Fact 3 (Properties of D)

• D(x||y) ≥ 0 with equality if and only if fx = fy almost everywhere4 (a.e.).

• If xG is a second order Gaussian random variable and x is any other random variable with the
same mean and covariance matrix, then

D(x||xG) = h(xG)− h(x) = D(ax||axG), (7)

where a ∈ R \ {0} is any real number.

¤¤¤

Remark 1 (Conditional divergence) It will prove useful to consider an extension of the definition
of divergence. Given two joint distributions fxy and fwz, we define the conditional divergence between
them5 via

D(x|y||w|z) ,
∫

fxy(u, v) ln
fx|y(u, v)
fw|z(u, v)

dudv. (8)

It is possible to show that the following holds:

• D(x|y||w|z) ≥ 0.

• If xG and yG are jointly Gaussian random variables having joint PDF fxGyG , and x and y are
arbitrary random variables having a joint PDF fxy with the same first and second order moments
as fxGyG , then

D(x|y||xG|yG) = h(xG|yG)− h(x|y). (9)

¤¤

We end this section with an extension of the notion of differential entropy to random processes.
3Also called the Kullback-Leibler “distance” between the distribution of x and the distribution of y.
4i.e., fx(u) = fy(u) except (perhaps) on a countable set of reals.
5Also known as conditional relative entropy (see [1]).
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Definition 5 (Differential entropy rate) Consider an asymptotically stationary process x. The differ-
ential entropy rate of x is defined by6

h̄(x) , lim
k→∞

h(xk−1)
k

. (10)

¤¤

If x is stationary, then it is clear that h̄(x) ≤ h(x(k)), with equality if and only if x is a sequence
of independent random variables (recall Fact 1).

Theorem 2 (Differential entropy rate (see, e.g., [2, 3])) If a stationary process x̂ is filtered by a
stable filter having frequency response H(ejω), then the filter output x has an entropy rate given by

h̄(x) = h̄(x̂) +
1
2π

∫ π

−π

ln
∣∣H(ejω)

∣∣dω. (11)

¤¤¤

2 Results

This section presents the main results of this note.

Lemma 1 Consider the situation depicted in Figure 1, where x and n are m-dimensional random
variables that have arbitrary distributions. If x and n are independent, and xG and nG denote inde-
pendent m-dimensional Gaussian random variables having the same mean and covariance matrix as x
and n, respectively, then

I(x; y) ≤ I(xG; yG) + D(n||nG), (12)

with equality if and only if x and n are jointly Gaussian.

Proof: Using Facts 2 and 1, the independence of x, n and xG, nG, and the definition of D(·||·),
it is easy to see that

I(x; y)− I(xG; yG) = h(y)− h(y|x)− h(yG) + h(yG|xG)
= h(x + n)− h(x + n|x)− h(xG + nG) + h(xG + nG|xG)
= h(nG)− h(n)− h(xG + nG) + h(x + n)
(a)= D(n||nG)−D(x + n||xG + nG)
≤ D(n||nG), (13)

where the last inequality follows from Fact 3. The result is now immediate. ¤¤¤

6xi is shorthand for x(0), x(1), · · · , x(i).
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Figure 1: Additive channel.

Lemma 2 Consider the situation depicted in Figure 1, where x and n are m-dimensional random
variables, x is Gaussian and n has an arbitrary distribution. If nG denotes an m-dimensional Gaussian
random variable, jointly Gaussian with x, having the same mean and covariance matrix as n, and such
that the cross-covariance between n and x equals the cross-covariance between nG and x, then

I(x;x + nG) ≤ I(x;x + n), (14)

with equality if the covariance matrix of x+n is non-singular, and n is Gaussian and jointly Gaussian
with x.

Proof: Using Fact 2 it is possible to write

I(x;x + n)− I(x; x + nG) = h(x|x + nG)− h(x|x + n). (15)

Use of the facts in Remark 1 the first part of the result follows. Clearly, if n is Gaussian, then equality
holds in (14). The proof of the converse can be found in [4]. ¤¤¤

Lemma 3 Consider the situation depicted in Figure 1, where x and n are independent scalar ran-
dom variables with arbitrary distributions. If xG and nG denote independent scalar Gaussian random
variables having the same mean and covariance matrix as x and n, and D(x||xG) ≤ D(n||nG), then

D(x + n||xG + nG) ≤ D(n||nG) and I(xG; xG + nG) ≤ I(x; x + n), (16)

with equality if and only if x and n are jointly Gaussian.

Proof: We will use the proof of Lemma 1. If the right hand side in equality (a) in (13) were
positive, then the result would be true. Thus, we will start examining the difference D(n||nG)−D(x+
n||xG + nG):

D(n||nG)−D(x + n||xG + nG) = h(nG)− h(n)− h(xG + nG) + h(x + n)

= h(x + n)− h(n) +
1
2

ln
2πeσ2

nG

2πe
(
σ2

xG
+ σ2

nG

)

= h(x + n)− h(n)− 1
2

ln
(

1 +
σ2

xG

σ2
nG

)
, (17)

where we have used Fact 3, the independence of xG, nG and Gaussianity. On the other hand, the
entropy power inequality allows one to conclude that, since x, n are independent,

h(x + n)− h(n) ≥ 1
2

ln
(
e2h(x) + e2h(y)

)
− h(n) =

1
2

ln
(

1 +
e2h(x)

e2h(n)

)
(18)
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Figure 2: Feedback system considered in Lemma 4.

Use of (18) in (17) yields

D(n||nG)−D(x + n||xG + nG) ≥ M , 1
2

ln
(

1 +
e2h(x)

e2h(n)

)
− 1

2
ln

(
1 +

σ2
xG

σ2
nG

)
(19)

and, since the variance of the Gaussian and non-Gaussian random variables is the same, we have from
(19) that

M ≥ 0 ⇔ e2h(x)

σ2
x

≥ e2h(n)

σ2
n

(a)⇔ h

(
x

σx

)
≥ h

(
n

σn

)
(b)⇔ 1

2
ln 2πe−D(x||xG) ≥

1
2

ln 2πe−D(n||nG) ⇔ D(x||xG) ≤ D(n||nG), (20)

where (a) follows from Fact 1 and (b) from Facts 3 and 1, and the fact that the variance of the Gaussian
and non-Gaussian random variables is the same. The result follows using (20) and (19) in equality (a)
in (13). ¤¤¤

Definition 6 Consider two random processes v and w. We define (if the defining limits exist) the
mutual information rate between v and w as

Ī∞(v; w) , lim
k→∞

1
k

I(vk−1; wk−1), (21)

and the average mutual information between v and w as

I∞(v → w) , lim
k→∞

1
k

k−1∑

i=0

I(w(i); vi|wi−1). (22)

¤¤

Lemma 4 Consider the feedback system in Figure 2, where 1−F (z) is stable and strictly proper (i.e.,
limz→∞ F (z) = 1), d is a random process, and q is an i.i.d. sequence that is independent of d and of
the initial state of F (z). Then,

Ī∞(d; w) = I∞(v → w)−
nF∑

i=1

log
∣∣pF

i

∣∣, (23)
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where {pF
1 , · · · , pF

nF
} denotes the set of non minimum phase zeros of F (z). ¤¤¤

Proof: By definition of mutual information rate and the chain rule of mutual information we
have that

Ī∞(d; w) = lim
k→∞

1
k

I(dk−1;wk−1) = lim
k→∞

1
k

k−1∑

i=0

I(w(i); dk−1|wi−1). (24)

Since w depends causally on d, it follows that I(w(i); dk−1|wi−1) = I(w(i); di|wi−1). Thus,

Ī∞(d; w) = I∞(d → w). (25)

Define n , w − d and note that

n = F (z)q. (26)

We first note that

I(w(i); di|wi−1)− I(w(i); vi|wi−1) (a)= h(w(i)|wi−1; vi)− h(w(i)|wi−1, di)
(b)= h(w(i)|wi−1; vi)− h(n(i)|wi−1, di)
(c)= h(w(i)|wi−1; vi)− h(n(i)|ni−1, di)
(c)= h(w(i)|wi−1; vi)− h(n(i)|ni−1), (27)

where (a) follows from Fact 2, (b) follows from the definition of n and Fact 1, (c) follows from the fact
that, by definition of n, M ↔ (wi−1, di) ↔ (ni−1, di) for every random variable M , and (d) follows
from the fact that, since d is independent of q and of the initial state of F (z), d is independent of n
and, thus, n(i) ↔ ni−1 ↔ di holds.

We also have that

h(w(i)|wi−1, vi) (a)= h(v(i) + q(i)|wi−1, vi)
(b)= h(q(i)|qi−1, vi)
(c)= h(q(i)|qi−1), (28)

where (a) follows from the definition of variables in Figure 2, (b) follows from Fact 1 and the fact that,
by definition, M ↔ (wi−1, vi) ↔ (qi−1, di) for every random variable M , and (c) follows from the fact
that both the initial state of F (z) and d being independent of q, q being i.i.d., and F (z) being strictly
proper guarantees that q(i) ↔ qi−1 ↔ vi.

From (25), (27), (28) and Fact 1 it follows that

Ī∞(d; w)− I∞(v → w) = h̄(q)− h̄(n). (29)

Use of Theorem 2, (26) and the Bode integral theorem (see, e.g., [5]) yields the result. ¤¤¤
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