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Some basics on modelling

What is a model of a system?

An abstract representation of the reality

An example
Father: Do your homework

Son: What if I don’t?

Father: Then you are grounded.
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Some basics on modelling

Different kinds of models

Mental: Intuition and experience, verbal:
if..., then...

Physical: Scale models, laboratory set-ups

Mathematical: Equations that describe relations
between quantities that are
important for the behaviour of
systems, e.g., laws of nature.

ẋ = Ax + bu

y = Cx + Du
(1)
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Some basics on modelling

A model depends on the problem context:

Simple models

- Linear, small, EDOs..

Complex models

- Nonlinear, large, PDEs

Trade off

Bad approximation of 
the reality

- More complex 
control/correction

Better approximation 
of the reality

- Simpler control/correction
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Some basics on modelling

What information is used to construct a model?

White Box Based of underlying physics and 
known parameters

GREY BOXGREY BOX

Based on measured data (I/O 
signals). No information on the 
internal structure or relations

IDENTIFICATION 
Black Box
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Some basics on modelling

Different types of mathematical models

Continuous time: t ∈ R Discrete time: k ∈ Z
Differential equations Difference equations

FEMTO-ST / UFC-ST 8 / 54



Some basics on modelling

Infinite (distributed parameters) and finite (lumped parameters) systems
∂2x
∂z2 = ∂2x

∂t2
dx
dt = Ax + Bu

FEMTO-ST / UFC-ST 9 / 54



Modelling

We will consider the following class of systems
• Deterministic finite dimensional (lumped parameters) continuous-time linear or

non-linear systems (ODEs).
• Models build using fundamental physical relations, or more precisely conservation

laws.
• Open systems, i.e., systems which interact with the environment through inputs

and outputs.

dx(t)
dt

= ẋ(t) = f (x(t), u(t)),

y(t) = h(x(t), u(t)),

with t ∈ R, x ∈ Rn, u ∈ Rm and y ∈ Rp . Furthermore f : Rn × Rm → Rn and
h : Rn × Rm → Rp .

Such set of ODEs is called a state-space model with state x
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Modelling

An ideal control system is composed by :
• Set of ideal elements like masses, springs, dampers, tanks, valves, tubes,

resistors, capacitors, inductors, diodes, chemical reactants, chemical products,
heaters, etc...

• Set of variables like velocities, positions, forces, volumes, flows, pressures,
voltages, currents, charges, fluxes, mole numbers, chemical potentials, entropy,
temperature, etc...

• Set of fundamental physical relations like Newton’s law, Bernoulli’s relations,
Maxwell’s equations, Gibb’s relation, the first and second principle of
Thermodynamics, etc...

• Set of interconnection relations between elements: Kirchkoff’s laws of current
and voltages.
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Modelling

We may identify dynamic and static elements:

Dynamic Masses, springs, capacitors, inductors, tanks, etc...
• Energy conservation

Static Dampers, transformers, resistors, valves, etc...
• Dissipation, scaling→ non-energy conservative

There are two kind of fundamental physical relations:

Constitutive: All elements,

Dynamic: Dynamic elements

}
⇒

Balance equations
↓

Dynamical system model
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Example: RLC circuit

Let us consider a simple linear RLC circuit:

Constitutive relations

us = Vin

ur = RIr
φ = LIL
Q = CuC

Dynamic relations

uL =
dφ
dt
, or in integral form φ(t) = φ(t0) +

∫ t

0
uL(τ)dτ

IC =
dQ
dt
, or in integral form Q(t) = Q(t0) +

∫ t

0
IC(τ)dτ
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Example: RLC circuit

Interconnection relations (Kirchkoff’s laws):
∑

u = 0 voltage law,
∑

i = 0 current law

Using the interconnection relations together with the constitutive and dynamical
relations we obtain the state space model

dQ
dt

=
φ

L
dφ
dt

= −
Q
C
− R

φ

L
+ Vin

with state variables x = [Q, φ] and input Vin.
• If the initial conditions Q(t0) and φ(t0) are known, together with the profile Vin,

then the time evolution of the system is fully determined for all t > t0.
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Example: RLC circuit

What about the energy of the systems?
Energy = Energy stored in the capacitor + Energy stored in the inductor

H(x(t)) =
1
2
φ

L

2
+

1
2

Q
C

2

The time variation of the energy is given by

dH(x(t))
dt

=
∂H
∂x

> dx
dt

=

(
Q
C

)(
φ

L

)
−
(

Q
C

)(
φ

L

)
+ Vin

(
φ

L

)
− R

(
φ

L

)2

= Vin

(
φ

L

)
− R

(
φ

L

)2
= VinIL − RI2

L

Hence, the balance equation characterizing the time variation of energy can be written
as

H(t) = H(t0) +
∫ t

0
Vin(τ)IL(τ)dτ −

∫ t

0
RIL(τ)2dτ
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Example: mass-spring-damper system

Let us consider a simple linear translational MSD system:

Constitutive relations

Fs = Fin

FB = BvB

p = MvM

q = K−1FK

Dynamic relations

FM =
dp
dt
, or in integral form p(t) = p(t0) +

∫ t

0
FM(τ)dτ

vK =
dq
dt
, or in integral form q(t) = q(t0) +

∫ t

0
vK (τ)dτ
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Example: mass-spring-damper system

Using the interconnection relations (Kirchkoff’s laws) together with the constitutive and
dynamical relations we obtain the state space model

dq
dt

=
p
M

dp
dt

= −
q

K−1
− B

p
M

+ Fin

with state variables x = [q, p] and input Fin.
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Example: MSD system

What about the energy of the systems?
Energy = Energy stored in the mass + Energy stored in the spring

H(x(t)) =
1
2

p
M

2
+

1
2

q
K−1

2

The time variation of the energy is given by

dH(x(t))
dt

=
∂H
∂x

> dx
dt

=
( q

K−1

)( p
M

)
−
( q

K−1

)( p
M

)
+ Fin

( p
M

)
− D

( p
M

)2

= Fin

( p
M

)
− B

( p
M

)2
= FinvM − Rv2

M

The balance equation characterizing the time variation of energy can be written as

H(t) = H(t0) +
∫ t

0
Fin(τ)vM(τ)dτ −

∫ t

0
BvM(τ)2dτ

FEMTO-ST / UFC-ST 18 / 54



Port-modelling of physical systems

Let us look closer to the models, and in particular to their balance equations:

A component’s dynamic relation→ x(t) = x(t0) +
∫ t

0
u′in(τ)dτ

And in particular to the energy balance

H(t) = H(t0) +
∫ t

0
uin(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
R(x)y(τ)2dτ︸ ︷︷ ︸

dissipated energy

The balance equations expresses conservation of some physical quantity: Energy,
mass, volume, etc...

The existence of balance equations is the base for dissipative and passive system
theory. All physical systems are dissipative or passive?

FEMTO-ST / UFC-ST 19 / 54



1. Modelling: what is it and why use it?

2. Dissipative and passive systems

3. Port-Hamiltonian control system
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Port-modelling of physical systems

Can different domains be approached in a similar way?

• Can they be modelled in a same structured manner?
• Can these models be interconnected in a physical consistent fashion?
• What about the study of solutions and stability properties? Can they be

approached using some generalized method?

Most engineering applications are mixtures of different domains. Treating the
subsystems related to separate domains differently is time-consuming, and often yields
causality issues when interconnecting the subsystems: common problem in signal
based modelling. In the nonlinear case the before mentioned questions become
critical!

Energy storage, dissipation, and transformation

Properties common to all physical domains
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Port-modelling of physical systems

Motivations for adopting an energy-based perspective in
modelling

• Physical system can be viewed as a set of simpler subsystems that exchange
energy through ports,

• Energy is a concept common to all physical domains and is not restricted to linear
or non-linear systems: non-linear approach,

• Energy can serve as a lingua franca to facilitate communication among scientists
and engineers from different fields,

• Role of energy and the interconnections between subsystems provide the basis
for various control techniques: Lyapunov based control.
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Dissipative and passive systems

The dynamic behaviour of a physical system is given by sets of balance equations.
These equations express conservation laws. Conservation of

• Energy
• Mass
• Momentum
• Volume
• etc...

How can we use this for modelling? We need a mathematical system theory to exploit
these properties:

Dissipative and passive system theory
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Dissipative and passive systems

Consider the system

ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)), (2)

with t ∈ R, x ∈ Rn, u ∈ Rm and y ∈ Rp . Furthermore f : Rn × Rm → Rn and
h : Rn × Rm → Rp . Let us addition define the supply rate w(t) = w(u(t), y(t)),∫ t

0
|w(u(τ), y(τ))dτ | <∞

Dissipative systems
The system (2) is said to be dissipative if there exists a so-called storage function
V (x) ≥ 0 such that the following dissipation inequality holds:

V (x(t)) ≤ V (x(0)) +
∫ t

0
w(u(τ), y(τ))dτ

along all possible trajectories of (2) starting at x(0), for all x(0), t ≥ 0.
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Dissipative systems

Some comments
• Storage functions are defined up to an additive constant,
• If the system is dissipative with respect to supply rates wi (u, y), 1 ≤ i ≤ m, then

the system is also dissipative with respect to any supply rate of the form∑m
i=1 αi wi (u, y), with αi ≥ 0 for all 1 ≤ i ≤ m.

• The definition, sometimes referred to as Willems’ dissipativity definition, does not
require any regularity on the storage functions: it is a very general definition.

• We may find several definitions of dissipativity in the literature
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Passive systems

A particular case of dissipative systems are passive systems:

Passive systems

Suppose that the system (2) is dissipative with supply rate w(u, y) = uT y and storage
function V (x(t)) with V (0) = 0; i.e. for all t ≥ 0 we have that

V (x(t)) ≤ V (x(0)) +
∫ t

0
u(τ)>y(τ)dτ,

Then the system is passive.

Passive systems are a subclass of dissipative systems with the specific properties
• The supply rate is defined by the product between inputs and outputs,
• The storage function is not defined up to a constant (V (0) = 0),
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Passive systems

The dissipation of a passive system may also be explicitly taken into account:

Strictly passive systems
A system (2) is said to be strictly state passive if it is dissipative with supply rate
w = u>y and the storage function V (x(t)) with V (0) = 0, and there exists a positive
definite function S(x) such that for all t ≥ 0:

V (x(t)) ≤ V (x(0)) +
∫ t

0
u(τ)>y(τ)dτ −

∫ t

0
S(x(τ))dτ,

If the equality holds in the above equation and S(x) = 0, then the system is said to be
lossless (conservative).

The function S(x) is called the the dissipation rate.
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Passive systems

Why are we interested in passive systems?
• Many physical systems are passive with respect to the storage function defined by

their physical energy function and with respect to their natural supply rate (given
by the physical inputs and outputs),

• Its a non-linear approach (does not require any assumption of linearity),
• The physical energy may be used as a candidate Lyapunov function to analyse

stability.
• A “well defined” interconnection of passive system is again a passive system.
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Examples: RLC circuit and MSD system

What about our examples? are they passive?
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Examples: RLC circuit and MSD system

The RLC circuit
Energy = Energy stored in the capacitor + Energy stored in the inductor

H(x(t)) =
1
2
φ

L

2
+

1
2

Q
C

2

The time variation of the energy is given by

dH(x(t))
dt

=
∂H
∂x

> dx
dt

=

(
Q
C

)(
φ

L

)
−
(

Q
C

)(
φ

L

)
+ Vin

(
φ

L

)
− R

(
φ

L

)2

= Vin

(
φ

L

)
− R

(
φ

L

)2
= VinIL − RI2

L

The time variation of the energy is

H(t) = H(t0) +
∫ t

0
Vin(τ)IL(τ)dτ −

∫ t

0
RIL(τ)2dτ
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Examples: RLC circuit and MSD system

H(x(t)) =
1
2
φ

L

2
+

1
2

Q
C

2
≥ 0, H(0) = 0.

Hence H qualifies as a potential storage function. Now,

H(t) = H(t0) +
∫ t

0
Vin(τ)IL(τ)dτ −

∫ t

0
RIL(τ)2dτ .

The system is passive if we choose u = Vin and y = IL:

H(t) ≤ H(t0) +
∫ t

0
Vin(τ)IL(τ)dτ .

Furthermore, if the we choose the dissipation rate as S(x) = RIL(τ)2, then the system
is strictly passive

H(t) = H(t0) +
∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.
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Examples: RLC circuit and MSD system

MSD system
Energy = Energy stored in the mass + Energy stored in the spring

H(x(t)) =
1
2

p
M

2
+

1
2

q
K−1

2

The time variation of the energy is given by

dH(x(t))
dt

=
∂H
∂x

> dx
dt

=
( q

K−1

)( p
M

)
−
( q

K−1

)( p
M

)
+ Fin

( p
M

)
− D

( p
M

)2

= Fin

( p
M

)
− B

( p
M

)2
= FinvM − Rv2

M

The balance equation characterizing the time variation of energy can be written as

H(t) = H(t0) +
∫ t

0
Fin(τ)vM(τ)dτ −

∫ t

0
BvM(τ)2dτ
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Examples: RLC circuit and MSD system

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2
≥ 0, H(0) = 0.

Hence H qualifies as a potential storage function. Now,

H(t) = H(t0) +
∫ t

0
Fin(τ)vM(τ)dτ −

∫ t

0
BvM(τ)2dτ .

The system is passive if we choose u = Fin and y = vM :

H(t) ≤ H(t0) +
∫ t

0
Fin(τ)vM(τ)dτ .

Furthermore, if the we choose the dissipation rate as S(x) = BvM(τ)2, then the
system is strictly passive

H(t) = H(t0) +
∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.
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Examples: RLC circuit and MSD system

Some remarks
• The chosen inputs and outputs correspond to the physical input and outputs of the

system: input voltage and input force / current in the inductor and velocity of the
mass

• If we eliminate the resistive components, resistor (R) and damper (B), the supply
rate is zero and the system is a lossless (conservative) passive system. Indeed,

H(t) = H(t0) +
∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

i.e., the energy is conserved.
• The product u>y has the units of power, i.e., it defines a power product. This has

strong implications for modelling: if the input and outputs define power products
the power preserving interconnection of physical (passive) systems defines again
a physical (passive) system.
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End of the first lesson: Gracias!
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Port-Hamiltonian control systems

• We have seen in the first part of this lecture that many physical systems are
dissipative or passive. These properties provide a structure for the modelling and
analysis of solutions of (non-linear) general control system.

• Question: can we expect an even more specific structure in general control
systems?
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Port-Hamiltonian control systems

Symplectic techniques in feedback control

• The structure of the dynamical equations may be related to Mathematical
Physics: Lagrangian and Hamiltonian systems augmented with input-output
maps.

• For mechanical systems, mechanisms and robots: controlled Lagrangian and
Hamiltonian systems (with dissipation).

• For electrical circuits: generalized Lagrangian and Hamiltonian systems (with
dissipation), dissipative port Hamiltonian systems

• Network models of complex and interconnected systems: Port-Hamiltonian
systems power conserving interconnections.
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Port-Hamiltonian control systems

Each engineering domain consists of two sub-domains:

Electrical Electrical + Magnetic

Mechanical Kinetic + Potential

Hydraulic Hydraulic kinetic + Hydraulic potential

Thermal domain has no sub-domains⇒ Irreversible creation of entropy
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Port-Hamiltonian control systems

How to treat all domains on equal footing?

The Generalized Bond Graph formalism [Breedveld 1982]

.
The main idea is to decompose the “conventional” engineering domains, i.e., electrical,
mechanical and hydraulical into new domains.

• For each new domain introduce two variables, called power conjugated variables,
• The product of these variables equals power: V × I, F × v , P × V , T × S,etc...,
• Label these variables as efforts e ∈ E and flows f ∈ F.

Each element defines a power port, with

P = ef

FEMTO-ST / UFC-ST 39 / 54



Port-Hamiltonian control system

Within this formalism a physical system is defined by the interconnection between
energy storage elements, resistive elements, and the environment:

This defines a natural space: F := FS × FR × FP ; E := ES × ER × EP
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Port-Hamiltonian control systems

The structure of any energy storing element is the following

ẋ = f

x(t) = x(0) +
∫ t

0
f (τ)dτ

e(t) =
∂H
∂x

(x(t))

With H(x) the stored energy of the element. The previous equations can be
schematically represented as
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Port-Hamiltonian control system

So, we arrive to the following set of variables in the Generalized Bond Graph formalism

Jeltsema. D, van Der Schaft, A. Memristive port-Hamiltonian systems, Mathematical and Computer
Modelling of Dynamical Systems - MATH COMPUT MODEL DYNAM SYST 01/2010; 16(2).
DOI:10.1080/13873951003690824

FEMTO-ST / UFC-ST 42 / 54



Port-Hamiltonian control systems

• The constitutive relations are of the form e = ∂H
∂x (x(t)),

• the dynamic relations are of the form ẋ = f

Furthermore, observe that the change in energy given by Ḣ = dH
dt (x(t)) is now always

given by the external power flow of the energy storing element:

Ḣ(x(t)) =
∂H
∂x

(x(t))ẋ = e>f

Hence by construction, the change of energy in time is always the product of flows and
efforts

Remark
In a similar manner a resistive element is defined by the static relation

eR = R(fR),⇒ PR = eR fR = R(fR)fR > 0,

which defines a positive (dissipative) power product.
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Port-Hamiltonian control systems

Dynamic system = System that exchanges Energy
• Storage of energy corresponds to a state.
• The natural physical states are in each engineering domain given by the

integrated flow variables x .
• The state variables x are called energy variables, whereas e are the co-energy

variables.
• Dynamic system if and only there is exchange of energy among the elements.

Is it possible to generalize the interconnection structure?

Yes! Dirac structure
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Port-Hamiltonian control systems

The interconnection structure satisfies the power preserving property

e>s fs + e>R fR + e>p fp = 0

or in terms of the energy storing elements

Ḣ(x(t)) = −e>s fs = e>R fR + e>p fp

which yields the energy balance equation

H(x(t)) = H(x(0)) +
∫ t

0
e>R (τ)fR(τ) + e>p (τ)fp(τ)dτ

Dirac structure → port-Hamiltonian systems
The power preserving property is defined by the geometric notion of a Dirac structure,
which naturally defines port-Hamiltonian control systems.
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Port-Hamiltonian control systems

The standard Hamiltonian system is defined by a geometric object (Dirac structure)
defined by a Poisson bracket:

{F ,G}(x) =
n∑

k,l=1

∂F
∂xk

(x)Jkl (x)
∂G
∂xl

(x)

where

J(x) =
[

0 In
−In 0

]
, x ∈ R2n,

with rank 2n everywhere. For any Hamiltonian H ∈ C∞(R2n), the Hamiltonian vector
field XH , is given by the familiar equations of motion:

q̇i =
∂H
∂pi

(q, p),

ṗi = −
∂H
∂qi

(q, p), i = 1, . . . , n

called the standard Hamiltonian equations, and q = (q1, . . . , qn) and p = (pi , . . . , pn)
are called the generalized configuration coordinates.
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Port-Hamiltonian control systems

A major generalization of Hamiltonian systems is to consider systems on a
differentiable manifold M with a pseudo-Poisson bracket {·, ·}. Then if one considers
local coordinates x1, . . . , xn, the port-Hamiltonian system is written as:

ẋ = J(x)
∂H
∂x

+ g(x)u

y = g(x)>
∂H
∂x

where x ∈ Rn is the state vector, u ∈ Rm, m < n, is the control action, H : Rn → R is
the total stored energy, J(x) = −J(x)> is the n × n natural interconnection matrix,
u, y ∈ Rm, are conjugated variables whose product has units of power and g(x), is the
n ×m input map. The following energy balance immediately follows

Ḣ = u>y

showing that a port–Hamiltonian system is a loss-less state space system, and hence
a passive system, if the Hamiltonian H is bounded from below.
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Port-Hamiltonian control systems

Energy-dissipation is included in the framework of port-Hamiltonian systems by
terminating some of the ports by resistive elements. In this case the model is of the
form

ẋ = (J − R)
∂H
∂x

+ gu,

y = gT ∂H
∂x

,

where R(x) = R(x)> ≥ 0 is the n × n damping matrix. In this case the
energy-balancing property takes the form

Ḣ = u>y −
∂H
∂x

>
R
∂H
∂x

,

Ḣ ≤ u>y ,

showing that a port-Hamiltonian system is passive if the Hamiltonian H is bounded
from below. Note that in this case two geometric structures play a role: the internal
interconnection structure given by J, and a dissipative structure given by R.
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Port-Hamiltonian control systems

Remarks
• In general, any systems without thermodynamic phenomena can be expressed as

PHS.
• Its enough to know the energy function and the interconnection structure

(geometry of the system): The dynamic of the system is completely determined by
these objects.
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Example: the RLC circuit

Let us first consider a lossless LC circuit. The energy is

H(x(t)) =
1
2

Q
C

2
+

1
2
φ

L

2

The interconnection structure just characterize the exchange of energy between the
inductor and the capacitor:

J =

[
0 1
−1 0

]
.

The internal dynamics of the system is then given by

ẋ = J
∂H
∂x

= J

[
Q
C
φ
L

]
=

[
φ
L
−Q

C

]

FEMTO-ST / UFC-ST 50 / 54



Example: the RLC circuit

Let us consider the complete RLC circuit, with dissipation and input port. The energy
remains the same

H(x(t)) =
1
2

Q
C

2
+

1
2
φ

L

2

The interconnection structure just characterize the exchange of energy between the
inductor and the capacitor, but in this case we have to add an additional structure
matrix that characterizes the dissipation of the system and an input vector field

J =

[
0 1
−1 0

]
, R =

[
0 0
0 R

]
, gu =

[
0
1

]
u

The complete dynamics of the system is now given by

ẋ = (J − R)
∂H
∂x

+ gu = (J − R)

[
Q
C
φ
L

]
+ gu =

[
φ
L

−Q
C − R φ

L + Vin

]
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Example: the MSD system

Let us first consider a lossless MS system. The energy is

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2

The interconnection structure just characterize the exchange of energy between the
mass and the spring:

J =

[
0 1
−1 0

]
.

The internal dynamics of the system is then given by

ẋ = J
∂H
∂x

= J
[ q

K−1
p
M

]
=

[ p
M

− q
K−1

]
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Example: the MSD system

Let us consider the complete MSD system, with dissipation and input port. The energy
remains the same

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2

The interconnection structure remains the same, but in this case we have to add an
additional structure matrix that characterizes the dissipation of the system and an input
vector field

J =

[
0 1
−1 0

]
, R =

[
0 0
0 B

]
, gu =

[
0
1

]
u

The complete dynamics of the system is now given by

ẋ = (J − R)
∂H
∂x

+ gu = (J − R)

[ q
K−1

p
M

]
+ gu =

[ p
M

− q
K−1 − B p

M + Fin

]

FEMTO-ST / UFC-ST 53 / 54



Concluding remarks

• Energy based modelling: based on the universal concept of energy transfer.
• Provides physical interpretation to the models and the solutions.
• Passivity is naturally encountered when working with problems arising from

physical applications.
• Port-Hamiltonian control systems defines a class of non-linear passive systems

which encompasses a large class of physical applications.
• A modelling and control approach which is transversal to different (or combination

of) physical domains.
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