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Outline

1. Stability: definitions

2. Passivity based control: Damping injection and energy shaping

FEMTO-ST / UFC-ST 3 / 33



Some basic notions on stability

We are considering the following class of state space model

ẋ(t) = f (x(t)),

x(0) = x0,
(1)

with t ∈ R and x ∈ Rn. Furthermore f : Rn × Rm → Rn. It is assumed that f (x(t))
satisfies the standard assumptions for existence and uniqueness of solutions, i.e., that
f (x(t)) is Lipschitz continuous with respect to x , uniformly in t , and piecewise
continuous in t .

We want to analyse the dynamics of the system

• Do the solutions of (1) remain bounded in time?
• If yes, do they in addition converge to some equilibrium point?
• If yes, can we say anything of the speed of convergence?
• Can we modify the solution with some external control input to impose a desired

closed-loop behaviour?
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Some basic notions on stability

We are considering the following class of state space model

ẋ(t) = f (x(t)),

x(0) = x0,
(2)

with t ∈ R and x ∈ Rn. Furthermore f : Rn × Rm → Rn. It is assumed that f (x(t))
satisfies the standard assumptions for existence and uniqueness of solutions, i.e., that
f (x(t)) is Lipschitz continuous with respect to x , uniformly in t , and piecewise
continuous in t .

Equilibrium position
An equilibrium point x∗ is a solution to

ẋ(x∗) = 0, i.e., f (x∗) = 0

Without loss of generality we will assume that x∗ = 0.
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Some basic notions on stability

An equilibrium position x = 0 of system (1) is
1. stable if for any ε > 0 and t0 ≥ 0, there exists a δ(ε, t0) > 0 such that ‖x0‖ < δ

implies ‖x(t , x0)‖ < ε for all t ≥ t0,

2. uniformly stable if δ does not depend on t0,

3. asymptotically stable if it is stable and for any t0 ≥ 0 there exists a ∆(t0) > 0 such
that every solution x(t , x0) of system (1 for which ‖x0‖ < ∆ satisfies the relation

lim
t→∞
‖x(t , x0)‖ → 0 (3)

4. uniformly asymptotically stable if it is uniformly stable, ∆ does not depend on t0,
and relation (3) holds uniformly with respect to t0 and x0 in the domain t0 ≥ 0,
‖x0‖ < ∆,
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Some notions on stability

An equilibrium position x = 0 of system (1) is
1. globally asymptotically stable if it is stable and relation (3) holds for any t0 ≥ 0 and

x0,

2. uniformly globally asymptotically stable if it is uniformly stable and relation (3)
holds for any t0 ≥ 0 and x0 uniformly relative to t0 and x0 in the domain t0 ≥ 0,
x0 ∈ K , where K is arbitrary compact in the x-space,

3. exponentially asymptotically stable if there exist positive constants ∆, M, and α
such that every solution x(t , x0) of system (1), for which ‖x0‖ < ∆, satisfies the
relation

‖x(t , x0)‖ < M‖x0‖e−α(t−t0) (4)

for all t ≥ t0 ≥ 0, and

4. globally exponentially asymptotically stable if there exist positive constants M and
α such that relation (4) holds for t ≥ t0 ≥ 0 and arbitrary t0 ≥ 0 and x0.
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Some notions on stability

Figures taken from:
http://www.math24.net/
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Some notions on stability

How do we analyse stability?

Lyapunov stability theory

• Lyapunov’s direct method (second method)→ non-linear systems
• Lyapunov’s indirect method (first method)→ linear systems

Lyapunov’s direct method allows to determine the stability of a system without explicitly
integrating the differential equations. The method is a generalization of the idea that if
there is some “measure of energy” in a system, then we can study the rate of change
of the energy of the system to ascertain stability.
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Some notions on stability

Let Bε be a ball of size ε around the origin, Bε = x ∈ Rn : x < ‖ε‖.

Positive definite function
A continuous function V : Rn → R is a locally positive definite function if V (0) = 0 and
for x ∈ Bε, x 6= 0→ V (x) > 0 . If Bε is the whole state space, then V (x) is globally
positive definite.

A positive definite function is like an energy function.
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Lyapunov’s direct method

Theorem: Lyapunov stability Let V (x) be a non-negative function with continuous
partial derivatives such that

• V (x) is positive definite on Bε, and V̇ ≤ 0 locally in x and for all t , then the origin
of the system is locally stable (in the sense of Lyapunov).

• If in addition V (x)→∞ when ‖x‖ → ∞, then the system is globally stable.

Theorem: Asymptotic stability Let V (x) be a non-negative function with continuous
partial derivatives such that

• V (x) is positive definite on Bε, and V̇ < 0, ∀x ∈ Bε/{0} and V (0) = 0 locally in x
and for all t , and then the origin of the system is locally asymptotically stable.

• If in addition V (x)→∞ when ‖x‖ → ∞, then the system is globally
asymptotically stable.
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Lyapunov’s direct method

Figure : taken from: http://www.math24.net/

For physical systems: relate the physical energy with Lyapunov functions
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Stability of passive systems

What about the stability of passive systems?
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Stability of passive systems

Consider the system

ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)), (5)

with t ∈ R, x ∈ Rn, u ∈ Rm and y ∈ Rp . Furthermore f : Rn × Rm → Rn and
h : Rn × Rm → Rp . Let us addition define the supply rate w(t) = w(u(t), y(t)),∫ t

0
|w(u(τ), y(τ))dτ | <∞

Dissipative systems
The system (5) is said to be dissipative if there exists a so-called storage function
V (x) ≥ 0 such that the following dissipation inequality holds:

V (x(t)) ≤ V (x(0)) +

∫ t

0
w(u(τ), y(τ))dτ

along all possible trajectories of (5) starting at x(0), for all x(0), t ≥ 0.
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Passive systems

Passive systems

Suppose that the system (5) is dissipative with supply rate w(u, y) = uT y and storage
function V (x(t)) with V (0) = 0; i.e. for all t ≥ 0 we have that

V (x(t)) ≤ V (x(0)) +

∫ t

0
u(τ)>y(τ)dτ,

Then the system is passive.

Or, equivalently

V̇ (x(t)) ≤ u>y

And in the absence of of an external input:

V̇ (x(t)) ≤ 0 → Passive systems are Lyapunov stable by definition
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Stabilization of passive systems

Questions:
• Can we make a passive system asymptotically stable?
• Can we increase the convergence rate to the origin?
• Can we shift the stable equilibrium?
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Stabilization of passive systems

Let us consider system arising from some physical energy model. We then usually
have

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

So if H(x) qualifies as a Lyapunov function and S(x) vanishes at x = 0 (and only in
x = 0), then the system is asymptotically stable!

So why do we need the control then?
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Stabilization of passive systems

• What if S(x) vanishes for some x 6= 0 or S(x) = 0?: damping injection,
• What if we want to increase the rate of convergence?: damping injection,
• What if we want to stabilize at some different equilibrium point, x = x∗, x∗ 6= 0:

Energy shaping
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Outline

1. Stability: definitions

2. Passivity based control: Damping injection and energy shaping
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Stabilization of passive systems

• What if S(x) vanishes for some x 6= 0 or S(x) = 0?: damping injection,
• What if we want to increase the rate of convergence?: damping injection,
• What if we want to stabilize at some different equilibrium point, x = x∗, x∗ 6= 0:

Energy shaping
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Stabilization of passive systems: Damping injection

Consider the energy balance equation of a passive system:

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

And assume that H(x) qualifies as a Lyapunov function candidate. If we select the
input u = −Ky , with K a positive definite constant matrix, then the energy balance
equation becomes:

H(t) = H(t0) −K
∫ t

0
y2(τ)dτ︸ ︷︷ ︸

controller

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

,

H(t) = H(t0) −
∫ t

0

(
Ky2(τ)dτ + S(x(τ))

)
dτ︸ ︷︷ ︸

dissipated energy

.
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Example: mass-spring-damper system

Let us consider a simple linear translational MSD system:

Constitutive relations

Fs = Fin

FB = BvB

p = MvM

q = K−1FK

Dynamic relations

FM =
dp
dt
, or in integral form p(t) = p(t0) +

∫ t

0
FM (τ)dτ

vK =
dq
dt
, or in integral form q(t) = q(t0) +

∫ t

0
vK (τ)dτ
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Examples: the MSD system

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2
≥ 0, H(0) = 0.

Hence H qualifies as a storage function and as a candidate Lyapunov function. Now,

H(t) = H(t0) +

∫ t

0
Fin(τ)vM (τ)dτ −

∫ t

0
BvM (τ)2dτ .

The system is passive if we choose u = Fin and y = vM , and furthermore, if we select
u = −Ky , (Fin = −KvM ), then

H(t) = H(t0)−
∫ t

0

(
Kv2

M (τ) + Bv2
M (τ)

)
dτ .

= H(t0)−
∫ t

0
(K + B)︸ ︷︷ ︸

B′

v2
M (τ)dτ

We have changed (increased) the system’s natural damping.
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Stabilization of passive systems: Energy Shaping

Consider the energy balance equation of a passive system:

H(t)− H(t0)︸ ︷︷ ︸
stored energy

=

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

Assume that we want to change the closed-loop equilibrium to some forced (controlled)
equilibrium x = x∗. In that case H(x∗) 6= 0, hence H(x) can no longer be used as
Lyapunov function!

We need to consider a new Lyapunov function candidate
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Stabilization of passive systems: Energy shaping

Let us consider the energy balance equation and assume we have no dissipation

H(t)− H(t0) =

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸
controller

The idea is to construct a new (closed-loop) energy function, by using the (state)
feedback u = β(x)

Hd (x , x∗) = H(x)−
∫ t

0
β(x(τ))y(τ)dτ

such that Hd , with Hd (x∗) = 0 qualifies as a Lyapunov function for the system.
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Stabilization of passive systems: Energy shaping

If this function exist (yes! why should it exist?) it will be a state function such that

Ha(x , x∗) = −
∫ t

0
β(x(τ))y(τ)dτ

Hence, Hd (x) = H(x) + Ha(x). The time derivative of Hd (x) along the trajectories of
the system is given by

Ḣd = Ḣ + Ḣa = Ḣ +
∂Ha

∂x

>
ẋ

⇒
∂Ha

∂x

>
ẋ = −β(x)y

Hence, for dynamical systems of the form ẋ = f (x , u), y = h(x), in order to the
function Ha to exist, the following PDE should be satisfied

∂Ha

∂x

>
(f (x , β(x))) = −β(x)h(x)
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Stabilization of passive systems: Energy shaping

Some remarks
• Energy shaping requires the solution of a PDE: the matching equation. Not an

easy task for general non-linear systems

Ha(x , x∗) = −
∫ t

0
β(x(τ))y(τ)dτ

• The existence of solutions for the PDE is strongly related with the existence of
physical invariants. In the case of port-Hamiltonian systems: Casimir functions.

• For systems arising from physical applications the energy shaping technique has
been proven to be a powerful stabilization method.
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Example: RLC circuit

Let us consider a simple linear RLC circuit:

Constitutive relations

us = Vin

ur = RIr
φ = LIL
Q = CuC

Dynamic relations

uL =
dφ
dt
, or in integral form φ(t) = φ(t0) +

∫ t

0
uL(τ)dτ

IC =
dQ
dt
, or in integral form Q(t) = Q(t0) +

∫ t

0
IC(τ)dτ
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Example: RLC circuit

The state space model

dQ
dt

=
φ

L
dφ
dt

= −
Q
C
− R

φ

L
+ Vin

with state variables x = [Q, φ], output y = φ
L = x2

L and input Vin. The energy of the
system is given by

H(x) =
1
2

x1

C

2
+

1
2

x2

L

2

• If Vin = 0, the natural equilibrium is x = (0, 0). If on other hand Vin = V∗, the
forced equilibrium point is x = (x∗1 , 0), with x∗1 = CV∗.
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Example: RLC circuit

The matching equation becomes

∂Ha

∂x

>
(f (x , β(x))) = −β(x)h(x)

∂Ha

∂x1

x2

L
−
∂Ha

∂x2

(
x1

C
− R

x2

L
− β(x)

)
= −

x2

L
β(x)

Notice that the forced equilibrium corresponding to the x2 coordinate already is a
minimum of the physical energy H(x), hence we only need to shape the closed-loop
energy in the x1 coordinate. Hence

Ha = Ha(x1)

and the matching equation becomes

∂Ha

∂x1

x2

L
= −

x2

L
β(x)

Hence, the function Ha exists if the feedback is chosen as β(x) = − ∂Ha
∂x1
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Example: RLC circuit

Beautiful!

The matching equation (PDE) is automatically solved for any Ha = Ha(x1) provided
that the state feedback is of the form β(x) = − ∂Ha

∂x1
.

• It only remains to select Ha(x1) such that Hd = H + Ha has a minimum at
x∗ = (x∗1 , 0).

Recall that the open-loop energy function is

H(x) =
1
2

x1

C

2
+

1
2

x2

L

2

Hence if we chose

Ha(x1) =
1

2Ca
x2

1 −
(

1
Ca

+
1
C

)
x1x∗1

The closed-loop energy function Hd = H + Ha

Hd (x) =
1
2

(x1 − x∗1 )

(C + Ca)

2

+
1
2

x2

L

2
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Example: RLC circuit

Hd (x , x∗) has a minimum at x∗ = (x∗1 , 0) if and only if Ca > −C

The resulting controller is

u = β(x) = −
1

2Ca
x2

1 −
(

1
Ca

+
1
C

)
x1x∗1
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Final remarks

• We have revised some concepts from passivity based control techniques:
Damping injection and Energy Shaping

• We have exploited the natural passivity of the system to design stabilizing
controllers

• Works well in many applications, but.... we did not see the dissipation obstacle...

What remains for the last lesson
• Control by interconnection
• IDA-PBC
• Its application to PHS
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