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Some basic notions on stability

We are considering the following class of state space model

X(t) = f(x(1), 0
x(0) = Xo,

with t € R and x € R". Furthermore f : R” x R™ — R". It is assumed that f(x(t))

satisfies the standard assumptions for existence and uniqueness of solutions, i.e., that

f(x(t)) is Lipschitz continuous with respect to x, uniformly in ¢, and piecewise

continuous in t.

We want to analyse the dynamics of the system

- Do the solutions of (1) remain bounded in time?
- If yes, do they in addition converge to some equilibrium point?
- If yes, can we say anything of the speed of convergence?

- Can we modify the solution with some external control input to impose a desired
closed-loop behaviour?
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Some basic notions on stability

We are considering the following class of state space model

(1) = F(x(1), o
x(0) = xo,

with t € R and x € R”. Furthermore f : R” x R™ — R". It is assumed that f(x(t))

satisfies the standard assumptions for existence and uniqueness of solutions, i.e., that

f(x(t)) is Lipschitz continuous with respect to x, uniformly in ¢, and piecewise

continuous in t.

Equilibrium position

An equilibrium point x* is a solution to
x(x*) =0, ie., f(x*)=0

Without loss of generality we will assume that x* = 0.
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Some basic notions on stability

An equilibrium position x = 0 of system (1) is

1. stable if for any e > 0 and f{, > 0, there exists a (e, tp) > 0 such that ||xp|| < ¢
implies ||x(t, xp)|| < eforall t > fp,

2. uniformly stable if 6 does not depend on fy,

3. asymptotically stable if it is stable and for any & > 0 there exists a A(#y) > 0 such
that every solution x(t, xo) of system (1 for which ||xp|| < A satisfies the relation

lim [|x(t, xo)|| — O ()
t— o0

4. uniformly asymptotically stable if it is uniformly stable, A does not depend on f,
and relation (3) holds uniformly with respect to ) and xp in the domain fp > 0,
Ixll < A,
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Some notions on stability

An equilibrium position x = 0 of system (1) is

1. globally asymptotically stable if it is stable and relation (3) holds for any #, > 0 and
X0,

2. uniformly globally asymptotically stable if it is uniformly stable and relation (3)
holds for any fy > 0 and xu uniformly relative to #, and xg in the domain # > 0,
Xp € K, where K is arbitrary compact in the x-space,

3. exponentially asymptotically stable if there exist positive constants A, M, and «
such that every solution x(t, xp) of system (1), for which ||xo|| < A, satisfies the
relation

[Ix(t, x0)|| < M]|xo||= () (4)
forallt > tp > 0, and

4. globally exponentially asymptotically stable if there exist positive constants M and
« such that relation (4) holds for t > #, > 0 and arbitrary &, > 0 and Xxg.
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Some notions on stability

Stability in the sense of Lyapunov

Figures taken from:
http://www.math24.net/
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Some notions on stability

How do we analyse stability?

Lyapunov stability theory

+ Lyapunov’s direct method (second method) — non-linear systems
* Lyapunov’s indirect method (first method) — linear systems

Lyapunov’s direct method allows to determine the stability of a system without explicitly
integrating the differential equations. The method is a generalization of the idea that if
there is some “measure of energy” in a system, then we can study the rate of change
of the energy of the system to ascertain stability.
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Some notions on stability

Let B be a ball of size € around the origin, Bc = x € R" : x < ||€]|.

Positive definite function

A continuous function V : R" — R is a locally positive definite function if V(0) = 0 and
for x € Be, x #0 — V(x) > 0. If Bc is the whole state space, then V(x) is globally
positive definite.

A positive definite function is like an energy function.
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Lyapunov’s direct method

Theorem: Lyapunov stability Let V(x) be a non-negative function with continuous
partial derivatives such that

- V(x) is positive definite on B., and V < 0 locally in x and for all t, then the origin
of the system is locally stable (in the sense of Lyapunov).

+ If in addition V(x) — oo when ||x|| — oo, then the system is globally stable.

Theorem: Asymptotic stability Let V(x) be a non-negative function with continuous
partial derivatives such that
- V(x) is positive definite on Be, and V < 0, Vx € B./{0} and V(0) = 0 locally in x
and for all t, and then the origin of the system is locally asymptotically stable.

+ If in addition V(x) — oo when ||x|| — oo, then the system is globally
asymptotically stable.
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Lyapunov’s direct method

Figure : taken from: http://www.math24.net/

For physical systems: relate the physical energy with Lyapunov functions
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Stability of passive systems

What about the stability of passive systems?
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Stability of passive systems

Consider the system

x(t) = f(x(1), u(t)),  y(t) = h(x(t), u(t)), (5)

witht € R, x € R”, u € R™ and y € RP. Furthermore f : R” x R™ — R" and
h:R" x R™ — RP. Let us addition define the supply rate w(t) = w(u(t), y(t)),

t
Amwwnmwkw

Dissipative systems

The system (5) is said to be dissipative if there exists a so-called storage function
V(x) > 0 such that the following dissipation inequality holds:

t
VMMSWMW+AWM@HWW

along all possible trajectories of (5) starting at x(0), for all x(0), ¢ > 0.
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Passive systems

Passive systems

Suppose that the system (5) is dissipative with supply rate w(u, y) = u” y and storage
function V(x(t)) with V(0) = 0; i.e. for all t > 0 we have that

t
Vx(®) < V) + [ ur)Ty(mdr,
0
Then the system is passive.
Or, equivalently

Vix(t) <u'y

And in the absence of of an external input:

Vx() <0 — | Passive systems are Lyapunov stable by definition
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Stabilization of passive systems

Questions:
- Can we make a passive system asymptotically stable?
+ Can we increase the convergence rate to the origin?
+ Can we shift the stable equilibrium?
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Stabilization of passive systems

Let us consider system arising from some physical energy model. We then usually
have

t ot
H(t):H(t0)+/0 u(r)y(r)dr — /OS(x(T))dT

supplied energy  dissipated energy

So if H(x) qualifies as a Lyapunov function and S(x) vanishes at x = 0 (and only in
x = 0), then the system is asymptotically stable!

So why do we need the control then? ‘
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Stabilization of passive systems

+ What if S(x) vanishes for some x # 0 or S(x) = 0?: damping injection,
+ What if we want to increase the rate of convergence?: damping injection,

- What if we want to stabilize at some different equilibrium point, x = x*, x* # 0:
Energy shaping
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Stabilization of passive systems

+ What if S(x) vanishes for some x # 0 or S(x) = 0?: damping injection,
+ What if we want to increase the rate of convergence?: damping injection,

- What if we want to stabilize at some different equilibrium point, x = x*, x* # 0:
Energy shaping
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Stabilization of passive systems: Damping injection

Consider the energy balance equation of a passive system:

t t
H(t):H(t0)+/0 u(r)y(r)dr — /0 S(x(+))dr .

supplied energy dissipated energy

And assume that H(x) qualifies as a Lyapunov function candidate. If we select the
input u = —Ky, with K a positive definite constant matrix, then the energy balance
equation becomes:

t t
H(t) = H(o) K [ y(ydr— [ sx(mar
controller dissipated energy
t
H(t) = H(t) 7/0 (K2 (r)dr + S(x(r))) dr.

dissipated energy

FEMTO-ST / UFC-ST

21/33



Example: mass-spring-damper system

Let us consider a simple linear translational MSD system:

Vi
I_‘ Constitutive relations
B Fs=F,
/ E .F, i S n
Ak M — Fg = Bvg
— 0 p=Mvy

# L g
q=K"Fk

‘M‘
Dynamic relations

dp o t
Fy = e or in integral form p(t) = p(to) + [ Fu(r)dr

Jo

dg L !
VK = oG or in integral form q(t) = q(t) + vk(T)dT

0
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Examples: the MSD system

1. g2 1p2
—— -— >0, H(0) =0.

2K Ta2m ~ (0)=0
Hence H qualifies as a storage function and as a candidate Lyapunov function. Now,

H(x(1)) =

H(t) = H(t0)+/0t Fin(r)vin(7)dlr — /OthM(T)ZdT.

The system is passive if we choose u = Fj, and y = vy, and furthermore, if we select
u= —Ky, (Fin = —Kvy), then

H(t) = H(ty) — /; (Kvii(r) + BVy(7)) dr.

t
= H(t) — /0 (K + B) V& (r)dr
B/

We have changed (increased) the system’s natural damping.
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Stabilization of passive systems: Energy Shaping

Consider the energy balance equation of a passive system:

t t
H(t) — H(to) =/0 u(r)y(r)dr — /OS(x(T))dT .

stored energy

supplied energy dissipated energy

Assume that we want to change the closed-loop equilibrium to some forced (controlled)
equilibrium x = x*. In that case H(x*) # 0, hence H(x) can no longer be used as
Lyapunov function!

We need to consider a new Lyapunov function candidate

(R cEs & FEMTO-ST / UFC-ST 24/33




Stabilization of passive systems: Energy shaping

Let us consider the energy balance equation and assume we have no dissipation

t
H(t) — H(to) = /0 u(r)y(r)dr

controller

The idea is to construct a new (closed-loop) energy function, by using the (state)
feedback u = 5(x)

t
Hy(x, x*) = H(x) /0 B(x(r)y(r)dr

such that Hy, with Hy(x*) = 0 qualifies as a Lyapunov function for the system.
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Stabilization of passive systems: Energy shaping

If this function exist (yes! why should it exist?) it will be a state function such that

t
Ha(x,x*) = — /0 B(x(r)y(r)dr

Hence, Hy(x) = H(x) + Ha(x). The time derivative of Hy(x) along the trajectories of
the system is given by

. o . OHa .
Hy=H+Ha=H+ ax"" X
OHa |
= =-
o X B(x)y

Hence, for dynamical systems of the form x = f(x, u), y = h(x), in order to the
function Hj to exist, the following PDE should be satisfied

.
2 (1(x, 50) = ~B0)(N)
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Stabilization of passive systems: Energy shaping

Some remarks

 Energy shaping requires the solution of a PDE: the matching equation. Not an
easy task for general non-linear systems

t
Ha(x, x*) = — /0 B(x(r))y(r)dr

» The existence of solutions for the PDE is strongly related with the existence of
physical invariants. In the case of port-Hamiltonian systems: Casimir functions.

» For systems arising from physical applications the energy shaping technique has
been proven to be a powerful stabilization method.
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Example: RLC circuit
Let us consider a simple linear RLC circuit:
r4
; ’V“A’ AN Constitutive relations
tis R C
+ us = Vi
V‘m{f} (_) g L ur = HI{
¢=Ll
Q= CUC
Dynamic relations
do . t
u = gt or in integral form o(t) = o(h) + / u (r)dr
Jo
dQ . ‘
e = o or in integral form Q(t) = Q() +/ le(T)dr
0
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Example: RLC circuit

The state space model

aQ _ ¢

da L

do  Q _o
9 _ _X_Rp?.v
o~ ¢ TptVm

= 2 and input Vj,. The energy of the

with state variables x = [Q, ¢], output y = %
system is given by
1 Xq 2 1 X22
Hx) = =— =
M=3¢ T21
« If Vi = 0, the natural equilibrium is x = (0, 0). If on other hand Vj, = V*, the
forced equilibrium point is x = (x{°, 0), with x;" = CV*.
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Example: RLC circuit

The matching equation becomes

:
e (1 B0 = ~BN(Y)

BHa X2 BHa Xq X2 ) X2
2 A _pgre_ __%2
oxi L ox (c L A LA

Notice that the forced equilibrium corresponding to the x» coordinate already is a
minimum of the physical energy H(x), hence we only need to shape the closed-loop

energy in the x; coordinate. Hence
Ha = Ha(X1)

and the matching equation becomes

OHa Xo X2
£ = _"23(x
0X4 L L 5( )
Hence, the function H; exists if the feedback is chosen as | 3(x) = —‘?)—;':a
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Example: RLC circuit

Beautiful!

The matching equation (PDE) is automatically solved for any Ha = Ha(x) provided
that the state feedback is of the form 8(x) = —‘3—2’5.
* It only remains to select Ha(x1) such that Hy = H + Ha has a minimum at
x* = (x{,0).

Recall that the open-loop energy function is

Hence if we chose

1 1 1 "
Ha(X1) = TC‘aXE — (—a + 7) X1Xq

The closed-loop energy function Hy = H + Ha

1(x1—x1"‘)2 1 x2
Hix)= X7 %)  1X
W) =3 Ccrcy T2
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Example: RLC circuit

Hq(x, x*) has a minimum at x* = (x;*,0) ifand only if Ca > —C

The resulting controller is

1 2 11 .
u=p(x)= ~2¢, (?a + 6) X1X]
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Final remarks

» We have revised some concepts from passivity based control techniques:
Damping injection and Energy Shaping

+ We have exploited the natural passivity of the system to design stabilizing
controllers

» Works well in many applications, but.... we did not see the dissipation obstacle...

What remains for the last lesson

» Control by interconnection
- IDA-PBC
- Its application to PHS
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