

2012 Annual Conference of the Prognostics and Health Management Society

An introduction to Prognosis, Uncertainty Representation, and Risk Measures

Dr. Marcos Orchard Department of Electrical Engineering Universidad de Chile Santiago, Chile

1.1) PHM, Fault Diagnosis and Failure Prognosis

1.1) PHM, Fault Diagnosis and Failure Prognosis

1.1) PHM, Fault Diagnosis and Failure Prognosis

1.2) Process Monitoring: Virtual Sensors and PLS

Source: Adapted from Inman et al. (2005), p. 6

1.2) Process Monitoring: Virtual Sensors and PLS

Identification of a dynamic model for y(t) using controls and measured disturbances u(t), other plant outputs $\eta(t)$, and delayed plant outputs y(t-d)

Use of the dynamic model as soft-sensor in the absence of measurement y(t) due to unavailable sensor signal

1.2) Process Monitoring: Virtual Sensors and PLS

 $g_{cc}(t) = 0.498 \cdot g_{cc}(t-2) + 0.217 \cdot g_{cf}(t) - 0.046 \cdot L_{p}(t) - 0.217 \cdot \tau(t-2) - 0.115 \cdot g_{ff}(t) - 0.108 \cdot g_{ff}(t-7)$

1.2) Process Monitoring: PLS

 Some examples from a rougher flotation plant, where the copper grade is the controlled variable (g_{cc}[%]):

* CONTAC Ingenieros Ltda., Software "SCAN"

1.2) Process Monitoring: PLS

- Recursive algorithm that can find directions of "maximum explicability", building a relation between a group of input variables and a set of output variables.
- Method that eases Model Structure Determination and Parameter Estimation in linear-in-the-parameters models.

- In addition, it allows to statistically characterize the prediction error in multivariate models.
- Off-line estimation technique. Model parameters are assumed to be constant!

1.3) Parameter Uncertainty and Particle Filters

Concept of "Artificial Evolution"

$$\begin{cases} x(t+1) = f_t(x(t), x_\alpha(t), \omega_1(t)) \\ x_\alpha(t+1) = x_\alpha(t) + \omega_\alpha(t) \\ \text{Features}(t) = h_t(x(t), x_\alpha(t), v(t)) \end{cases}$$

- f_t and h_t are non-linear mappings.
- **x(t)** is the state vector.
- $\omega_1(t)$ and v(t) are non-Gaussian distributions
- $x_{\alpha}(t)$ is an state associated with an unknown model parameter α
- $\omega_{\alpha}(t)$ is zero-mean random noise

1.3) Parameter Uncertainty and Particle Filters

✤Particle: Duple{ $w_t^{(i)}, x_{0:t}^{(i)}$ }, being $x_{0:t}^{(i)}$ a realization of process state *pdf*.

- Every particle is associated with an scalar $W_t^{(i)}$, namely the weight
 - Sampled version of the PDF

We only need to study the propagation of particles in time!

✤ <u>Steps</u>:

- Predict the "a priori" PDF, using the model
- Update parameters, given the new measurement

2) Model Uncertainty and PF-based Fault Diagnosis

2) Model Uncertainty and PF-based Fault Diagnosis

Summary:

- Type I Error (False Positives) fixed at 5%
 - Design parameter
- <u>Type II Error</u> (*False Negatives*)

$$1 - \sum_{i} w_T^{(i)}$$
 such that $x_c^{(i)}(T) \ge z_{1-\alpha,\mu,\sigma^2}$

- Estimated Probability of Fault Condition = $E\{x_{d,2}\}$
- Fisher's Discriminant Ratio

2) Model Uncertainty and PF-based Fault Diagnosis

• Dynamic Model for Feature Growth in Time:

 $\begin{cases} x_1(t+1) = x_1(t) + x_2(t) \cdot F(x_1(t), t, U) + \omega_1(t) \\ x_2(t+1) = x_2(t) + \omega_2(t) \end{cases}$

- $x_1(t)$ is a state representing the fault dimension under analysis
- $x_2(t)$ is a state associated with an unknown model parameter
- *U* are external inputs to the system (load profile, etc.)
- F(x(t), t, U) is a general time-varying nonlinear function
- $\omega_1(t)$ and $\omega_2(t)$ are white noises (non necessarily Gaussian)
- Predicted State Density:

$$\hat{p}(x_{t+k} \mid \hat{x}_{1:t+k-1}) \approx \sum_{i=1}^{N} w_{t+k-1}^{(i)} K\left(x_{t+k} - E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right]\right)$$

PARTICLE FILTERING-BASED FRAMEWORK

- Estimating the Remaining Useful Life (RUL)
- Generation of Long-Term Predictions
- *p*-step predictions for a fault indicator
- Prediction entails large-grain uncertainty

$$\tilde{p}(x_{t+p} \mid y_{1:t}) = \int \tilde{p}(x_t \mid y_{1:t}) \prod_{j=t+1}^{t+p} p(x_j \mid x_{j-1}) dx_{t:t+p-1}$$
$$\approx \sum_{i=1}^{N} w_i^{(i)} \int \cdots \int p(x_{t+1} \mid x_t^{(i)}) \prod_{j=t+2}^{t+p} p(x_j \mid x_{j-1}) dx_{t+1:t+p-1}$$

- ✓ First Approach for Long-Term Prediction: (Weight Update Procedure)
 - Predicted Trajectory: $\hat{x}_{t+p}^{(t)} = E[f_{t+p}(\tilde{x}_{t+p-1}^{(t)}, \omega_{t+p})] \quad ; \quad \hat{x}_{t}^{(t)} = \tilde{x}_{t}^{(t)}$
 - Predicted State pdf @ time t+k

$$\hat{p}(x_{t+k} \mid \hat{x}_{t+k-1}) \approx \sum_{i=1}^{N} \widehat{w_{t+k-1}^{(i)}} \hat{p}(x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}) ; k = 1, \cdots, p$$
Predicted Conditional pdf (noise model)

✓ First Approach for Long-Term Prediction: (Weight Update Procedure)

Weight update for Long-Term Prediction

• Construct a partition of the random variable domain by defining:

$$d_{t+k}^{(1)} = -\infty; \quad d_{t+k}^{(N+1)} = \infty$$

$$d_{t+k}^{(j)} = \frac{1}{2} \left(\hat{x}_{t+k}^{(j)} + \hat{x}_{t+k}^{(j-1)} \right), \quad j = 2, \dots, N$$

• Generate the updated particle weights by computing:

$$w_{t+k}^{(i)} = \int_{d_{t+k}^{(i)}}^{d_{t+k}^{(i+1)}} \hat{p}(x_{t+k} \mid \hat{x}_{0:t+k-1}, y_{1:t}) dx_{t+k}$$

- ✓ Second Approach for Long-Term Prediction: (Regularization of Predicted State pdf)
- Uncertainty: Resampling procedure for predicted state pdf
- Statistical information given by the position of the particles, not by the particle weight.
- Use of Epanechnikov kernels

$$K_{opt}(x) = \begin{cases} \frac{n_x + 2}{2c_{n_x}} \left(1 - \|x\|^2\right) & \text{if } \|x\| < 1\\ 0 & \text{otherwise} \end{cases}$$

$$\hat{p}(x_{t+k} \mid \hat{x}_{1:t+k-1}) \approx \sum_{i=1}^{N} w_{t+k-1}^{(i)} K\left(x_{t+k} - E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right]\right)$$

 $\int xK(x)dx$

 ✓ Second Approach for Long-Term Prediction: (Regularization of Predicted State pdf)

Long Term Predictions: Second Approach

- For $i = 1, \dots, N$, $w_{t+k}^{(i)} = N^{-1}$
- Calculate \hat{S}_{t+k} , the empirical covariance matrix of $\left\{ E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right], w_{t+k}^{(i)}\right\}_{i=1}^{N}$

• Compute
$$\hat{D}_{t+k}$$
 such that $\hat{D}_{t+k}\hat{D}_{t+k}^T = \hat{S}_{t+k}$

• For $i = 1, \dots, N$, draw $\varepsilon^i \sim K$, the Epanechnikov kernel and assign

$$\hat{x}_{t+k}^{(i)*} = \hat{x}_{t+k}^{(i)} + h_{t+k}^{opt} \hat{D}_{t+k} \varepsilon^{i}$$

$$K_{opt}(x) = \begin{cases} \frac{n_x + 2}{2c_{n_z}} \left(1 - ||x||^2\right) & \text{if } ||x|| < 1\\ 0 & \text{otherwise} \end{cases}$$

$$h_{opt} = A \cdot N^{-\frac{1}{n_0 + 4}}$$
$$A = \left(8 c_{n_0}^{-1} \cdot (n_x + 4) \cdot \left(2\sqrt{\pi}\right)^{n_x}\right)^{\frac{1}{n_0 + 4}}$$

For *k* = 1, 2, 3, ...

- Use nonlinear State equation and Inverse Transform Resampling to obtain a set of equally weighted particles centered at $\left\{ E \left[x_{t+k}^{(i)} | \hat{x}_{t+k-1}^{(i)} \right] \right\}_{i=1}^{N}$
- Use Epanechnikov kernels and the Regularization algorithm to obtain a new set of equally weighted particles $\left\{\hat{x}_{t+k}^{(i)}\right\}_{i=1}^{N}$

• Calculate \hat{S}_{t+k} , the empirical covariance matrix of $\left\{ E \left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)} \right], w_{t+k}^{(i)} \right\}_{i=1}^{N}$

- Compute \hat{D}_{t+k} such that $\hat{D}_{t+k}\hat{D}_{t+k}^T = \hat{S}_{t+k}$
- For $i = 1, \dots, N$, draw $\varepsilon^i \sim K$, an Epanechnikov kernel and assign $\hat{x}_{t+k}^{(i)*} = \hat{x}_{t+k}^{(i)} + h_{t+k}^{opt} \hat{D}_{t+k} \varepsilon^i$

 ✓ <u>Third Approach for Long-Term Prediction</u>: (Projection in Time of State Expectations)

$$\hat{x}_{t+p}^{(i)} = E[f_{t+p}(\tilde{x}_{t+p-1}^{(i)}, \omega_{t+p})] \quad ; \quad \hat{x}_{t}^{(i)} = \tilde{x}_{t}^{(i)}$$

 $w_{t+k}^{(i)} = w_{t+k-1}^{(i)}$; $k = 1, \cdots, p$

- Simpler in terms of computational effort.
- Particle weights invariant for future time instants.
- When it works, sources of error are negligible compared to:
 - model inaccuracies
 - wrong assumptions about noise parameters

4) Parameter Uncertainty and Outer Correction Loops

4) Parameter Uncertainty and Outer Correction Loops

4) Parameter Uncertainty and Outer Correction Loops

• Concept of "Artificial Evolution" revised

$$\begin{cases} x(t+1) = f_t(x(t), x_\alpha(t), \omega_1(t)) \\ x_\alpha(t+1) = x_\alpha(t) + \omega_\alpha(t) \\ \text{Features}(t) = h_t(x(t), x_\alpha(t), v(t)) \end{cases}$$

- f_t and h_t are non-linear mappings.
- **x(t)** is the state vector.
- $\omega_1(t)$ and v(t) are non-Gaussian distributions
- $x_{\alpha}(t)$ is an state associated with an unknown model parameter α
- $\omega_{\alpha}(t)$ is zero-mean random noise

Proposed Outer Correction Loop:

$$\begin{cases} \operatorname{var}\{\omega_{\alpha}(t+1)\} = p \cdot \operatorname{var}\{\omega_{\alpha}(t)\}, \text{ if } \frac{\|\operatorname{Pred}\operatorname{error}(t)\|}{\|\operatorname{Feature}(t)\|} < Th \\ \operatorname{var}\{\omega_{\alpha}(t+1)\} = q \cdot \operatorname{var}\{\omega_{\alpha}(t)\}, \text{ if } \frac{\|\operatorname{Pred}\operatorname{error}(t)\|}{\|\operatorname{Feature}(t)\|} > Th \end{cases}$$

• 0 , <math>q > 1, and 0 < Th < 1 are scalars

- Formally speaking...
- Assume a nonlinear state equation: $\begin{cases} x_{k+1} = x_k + \alpha_k \cdot F(x_k, \alpha_k) + \omega_k \\ \alpha_{k+1} = L(\alpha_k, e_k^s) + \omega_k' \end{cases}$ where $L(\alpha_k, e_k^s) = \alpha_k$ $y_k = x_k + v_k$

• First Approach:
$$var(\boldsymbol{\omega}'_{k}) \coloneqq \begin{cases} p \cdot var(\boldsymbol{\omega}'_{k}) & |e_{k}^{s}| \leq e^{th} \\ q \cdot var(\boldsymbol{\omega}'_{k}) & |e_{k}^{s}| > e^{th} \end{cases}$$

Second Approach:

$$L(\boldsymbol{\alpha}_{k}, \boldsymbol{e}_{k}^{s}) \coloneqq \begin{cases} \boldsymbol{\alpha}_{k} & \left| \boldsymbol{e}_{k}^{s} \right| \leq e^{th} \\ \boldsymbol{\alpha}_{k} + \eta \boldsymbol{e}_{k}^{s} & \left| \boldsymbol{e}_{k}^{s} \right| > e^{th} \end{cases}, \quad var(\boldsymbol{\omega}_{k+1}') \coloneqq \begin{cases} p \cdot var(\boldsymbol{\omega}_{k}') & \left| \boldsymbol{e}_{k}^{s} \right| \leq e^{th} \\ \boldsymbol{\sigma}_{0}^{2} & \left| \boldsymbol{e}_{k}^{s} \right| > e^{th} \end{cases}$$

• Classic PF-based Prognosis Framework:

• Outer Correction Loops in a PF-based Prognosis Framework:

- Results for Outer Correction Loops in a case study (several runs of the algorithm, given the stochastic nature of the filtering algorithm)
- ✓ Outer Correction Loop that modifies only the variance of model hyperparameters:

```
Mean of ToF Expectation = 540 cycles (ground truth = 650 cycles)
Mean of 95% CI Lower Limit = 503 cycles
Mean of 95% CI Upper Limit = 573 cycles
```

✓ Outer Correction Loop that modifies only the expectation and variance of hyper-parameters:

Mean of ToF Expectation = 645 cycles (ground truth = 650 cycles) Mean of 95% CI Lower Limit = 608 cycles Mean of 95% CI Upper Limit = 681 cycles

<u>RUL On-line Precision Index (RUL-OPI)</u>:

- Considers the relative length of the 95% confidence interval computed at time t (CI_t), when compared to the remaining useful life.
- Quantifies the concept: "the more data the algorithm processes, the more precise the prognostic result"
- Good prognostic results are associated to values of $I_1(t) \approx 1$

$$I_{1}(t) = e^{-\left(\frac{\sup(CI_{t}) - \inf(CI_{t})}{E_{t}\{RUL\}}\right)} = e^{-\left(\frac{\sup(CI_{t}) - \inf(CI_{t})}{E_{t}\{ToF\} - t}\right)}$$
$$0 < I_{1}(t) \le 1, \forall t \in [1, E_{t}\{ToF\}), t \in \mathbb{N}$$

RUL Accuracy-Precision Index:

- Considers the error in the ToF estimate with respect to the length of the 95% confidence interval computed at time t (Ci_t) and penalizes the fact that $E_t \{ToF\} > Ground Truth \{ToF\}$
- Good prognostic results are associated to values of the index such that $0 \leq 1 I_2(t) \leq \mathcal{E}$

where \mathcal{E} is a small positive constant

$$I_{2}(t) = e^{-\left(\frac{Ground Truth\{ToF\} - E_{t}\{ToF\}}{\sup(CI_{t}) - \inf(CI_{t})}\right)}$$

$$0 < I_{2}(t), \forall t \in [1, E_{t}\{ToF\}), t \in \mathbb{N}$$

RUL On-line Steadiness Index (RUL-OSI):

- Considers the current estimate for the expectation of the time of failure (ToF) computed at time *t*.
- Quantifies the concept: "the more data the algorithm processes, the more steady the prognostic result"
- Good prognostic results are associated to small values for the RUL-OSI

$$I_{3}(t) = \sqrt{Var(E_{t} \{ToF\})}$$
$$I_{3}(t) \ge 0, \forall t \in \mathbb{N}$$

Application examples... ullet

- In order to accurately predict the Remaining Useful Life (RUL) of a failing system, one must consider the future, and often unpredictable, stresses that will be acting on the system.
 - How do these stresses affect the Remaining Useful Life (RUL)?
 - How does uncertainty in these stresses affect the RUL estimate?
 - How can uncertainty be quantified?
- Only after addressing these issues, it is possible to answer one particularly interesting question:
 - How can knowledge of uncertainty be used to extend the RUL of a failing system?

- A number of elements can alter in a significant manner the RUL of equipment and components.
- Consider, for example, uncertainty associated to load profiles, model errors, and measurement noise.
- Thus, RUL uncertainty (ΔRUL) can be written as:

• Level 1:
$$\Delta RUL = \left\{ \left[\frac{\partial RUL}{\partial model} \Delta model \right]^2 + \left[\frac{\partial RUL}{\partial load} \Delta load \right]^2 + \left[\frac{\partial RUL}{\partial meas} \Delta meas. \right]^2 \right\}^{1/2}$$

• Level 2: $\Delta load = \left\{ \left[\frac{\partial load}{\partial mission} \Delta mission \right]^2 + \left[\frac{\partial load}{\partial regime data} \Delta regime data \right]^2 + \left[\frac{\partial load}{\partial sensors} \Delta sensors \right]^2 \right\}^{1/2}$

• Level 3: This reasoning can be extrapolated analogously...

- Particle Filter (PF) algorithms have become a key component of failure prognosis frameworks:
 - Strong mathematical foundation
 - Allow online uncertainty representation of state estimates and long-term predictions in nonlinear systems
 - Allow online uncertainty management via the implementation of outer feedback correction loops.
- These facts motivate the usage of PF-based uncertainty measures to quantify, in real time, the impact of load, environmental, and other stresses for long-term prediction.

• If the input of the system is also assumed to be a stochastic process:

Dispersion Sensitivity

Confidence Interval Sensitivity

Dispersion Sensitivity Approach

(1)
$$stdev\{RUL_{Base+\sigma}\} = \frac{RUL_{D} - E\{RUL_{Base}\}}{Z_{0.95}}$$

(2) $stdev\{U_{Base+\sigma}\} = \left(\frac{stdev\{RUL_{Base+\sigma}\}}{stdev\{RUL_{Base}\}} - 1\right)\frac{stdev\{\omega\}}{DS - 1}$
(3) $U_d = U_{Base} - stdev\{U_{Base+\sigma}\}$
 $\sigma_o^{=}stdev\{RUL\}$
 $(stdev\{input\}=0\%)$
 15% $stdev\{\omega\}$
 \mathcal{C}^{DS-1}
 \mathcal{C}^{SD}

Confidence Interval Sensitivity Approach

(1)
$$Length(CI\{RUL_{Base+\sigma}\}) = 2(RUL_{D} - E\{RUL_{Base}\})$$

(2) $stdev\{U_{Base+\sigma}\} = \left(\frac{Length(CI\{RUL_{Base+\sigma}\})}{length(CI\{RUL_{Base}\})} - 1\right)\frac{stdev\{\omega\}}{CIS - 1}$
(3) $U_d = U_{Base} - stdev\{U_{Base+\sigma}\}$
(4) $U_d = U_{Base} - stdev\{U_{Base+\sigma}\}$
(5) $U_d = U_{Base+\sigma}$
(5) $U_d = U_{Base+\sigma}$
(5) $U_d = U_{Base+\sigma}$
(6) $U_d = U_{Base+\sigma}$
(6) $U_d = U_{Bas$

Case Study:

A critical component (planetary gear carrier plate) in a rotorcraft transmission system is experiencing a fatigue crack.

The baseline load on the rotorcraft is 120% of the maximum recommended torque. At this load, a failure is predicted to occur at time 594 cycles.

Dispersion Sensitivity

Dispersion Sensitivity Approach

 $U_{Base} = 120\% \implies \text{ToF: 594} \qquad DS_{15\%} = \frac{stdev\{RUL_{Base+\omega}\}}{stdev\{RUL_{Base}\}}$ $U_{D} = ? \implies \text{ToF: 714} \qquad = \frac{41.52cycles}{12.44cycles} = 3.3362$

Dispersion Sensitivity

Phmsociety 56

Dispersion Sensitivity Approach

 $U_{Base} = 120\% \implies \text{ToF: 594} \qquad DS_{15\%} = \frac{stdev\{RUL_{Base+\omega}\}}{stdev\{RUL_{Base}\}}$ $U_D = ? \implies \text{ToF: 714} \qquad = \frac{41.52cycles}{12.44cycles} = 3.3362$

(1)
$$stdev\{RUL_{Base+\varpi}\} = \frac{RUL_D - E\{RUL_{Base}\}}{Z_{0.95}} = \frac{714 - 594}{1.627} = 73.755$$

(2) $stdev\{U_{Base+\varpi}\} = \left(\frac{stdev\{RUL_{Base+\varpi}\}}{stdev\{RUL_{Base}\}} - 1\right)\frac{stdev\{\omega\}}{DS - 1} = 31.64\%$

Dispersion Sensitivity Approach lacksquare

Dispersion Sensitivity

Physical Stress of the second seco

 $DS_{15\%} = \frac{stdev\{RUL_{Base+\omega}\}}{stdev\{RUL_{Pase}\}}$ $U_{Base} = 120\% \implies \text{ToF: 594}$ $U_D = 88.36\% \implies$ ToF: 714 $=\frac{41.52cycles}{12.44cycles}=3.3362$

Actual Results from Fault Testing: $U_D = 93\%$

(1)
$$stdev\{RUL_{Base+\varpi}\} = \frac{RUL_D - E\{RUL_{Base}\}}{Z_{0.95}} = \frac{714 - 594}{1.627} = 73.755$$

(2) $stdev\{U_{Base+\varpi}\} = \left(\frac{stdev\{RUL_{Base+\varpi}\}}{stdev\{RUL_{Base}\}} - 1\right)\frac{stdev\{\omega\}}{DS - 1} = 31.64\%$

Confidence Interval Sensitivity Approach

 $U_{Base} = 120\% \implies \text{ToF: 594}$ $U_D = ? \implies \text{ToF: 714}$ Confidence Interval Sensitivity $CIS_{15\%} = \frac{Length(CI\{RUL_{Base}\})}{Length(\{RUL_{Base}\})}$ $= \frac{142cycles}{38cycles} = 3.7368$

Confidence Interval Sensitivity Approach

 $U_{Base} = 120\% \implies \text{ToF: 594}$ $U_D = ? \implies \text{ToF: 714}$ $CIS_{15\%} = \frac{Length(CI\{RUL_{Base+\omega}\})}{Length(\{RUL_{Base}\})}$ $= \frac{142cycles}{38cycles} = 3.7368$

(1) $Length(CI\{RUL_{Base+\varpi}\}) = 2(RUL_D - E\{RUL_{Base}\}) = 2(714 - 594) = 240$

(2)
$$stdev\{U_{Base+\varpi}\} = \left(\frac{Length(CI\{RUL_{Base+\varpi}\})}{Length(CI\{RUL_{Base}\})} - 1\right)\frac{stdev\{\omega\}}{CIS - 1} = 29.13\%$$

(3)
$$U_d = U_{Base} - stdev\{U_{Base+\sigma}\} = 120\% - 29.13\% = 90.87\%$$

Confidence Interval Sensitivity Approach

 $U_{Base} = 120\% \implies \text{ToF: 594}$ $U_D = 90.87\% \implies \text{ToF: 714}$ $U_D = 90.87\% \implies \text{ToF: 714}$ $CIS_{15\%} = \frac{Length(CI\{RUL_{Base}\})}{Length(\{RUL_{Base}\})}$ $= \frac{142cycles}{38cycles} = 3.7368$

(1) $Length(CI\{RUL_{Base+\varpi}\}) = 2(RUL_D - E\{RUL_{Base}\}) = 2(714 - 594) = 240$

(2)
$$stdev\{U_{Base+\varpi}\} = \left(\frac{Length(CI\{RUL_{Base+\varpi}\})}{Length(CI\{RUL_{Base}\})} - 1\right)\frac{stdev\{\omega\}}{CIS - 1} = 29.13\%$$

(3)
$$U_d = U_{Base} - stdev\{U_{Base+\varpi}\} = 120\% - 29.13\% = 90.87\%$$

Just-in-Time Point vs. RUL Expectations

Definition:

(R1)
$$\mathcal{R}(C) = C$$
 for all constants C ,
(R2) $\mathcal{R}((1-\lambda)X + \lambda X') \leq (1-\lambda)\mathcal{R}(X) + \lambda \mathcal{R}(X')$ for
 $\lambda \in (0,1)$ ("convexity")
(R3) $\mathcal{R}(X) \leq \mathcal{R}(X')$ when $X \leq X'$ ("monotonicity")
(R4) $\mathcal{R}(X) \leq 0$ when $||X^k - X||_2 \to 0$ with $\mathcal{R}(X^k) \leq 0$
("closedness")

It will also be called a coherent measure of risk in the basic sense if it also satisfies

 (R5) R(λX) = λR(X) for λ > 0 ("positive homogene-ity")

• Fault Value at Risk (FVaR) and Risk Assessment:

$$FVaR(t, t_{prognosis}) \Leftrightarrow \alpha = 0.95 = \int_{-\infty}^{FVaR(t, t_{prognosis})} \hat{p}(x_{t}^{1} | y_{t_{prognosis}}) dx_{t}^{1}$$

$$Risk_{FVaR}(t, t_{prognosis}) = \left(E\{Hazard Zone\} - FVaR(t, t_{prognosis})\right)^{-1}$$

$$I = \left(\frac{1}{2}\right)^{-0} + \left(\frac{1}{2}\right)^{-0} + \frac{1}{2}\right)^{-0} + \frac{1}{2}\left(\frac{1}{2}\right)^{-0} + \frac{1}{2}\left(\frac{1}{2}\right$$

- Data registering two different operational profiles (charge and discharge) at room temperature (NASA Ames Research Center).
- Charging is carried out in a constant current (CC) mode at 1.5[A] until the battery voltage reached 4.2[V] and then continued in a constant voltage mode until the charge current dropped to 20[mA].
- Discharge is carried out at a constant current (CC) level of 2[A] until the battery voltage fell to 2.5[V].
- The experiments were stopped when the batteries reached end-oflife (EOL) criteria, which was a 40% fade in rated capacity (from 2 [A-hr] to 1.2[A-hr]).

- **Normal** condition reflects the fact that the battery SOH is slowly diminishing as a function of the number of charge/discharge cycles
- **Anomalous** condition indicates an abrupt increment in the battery SOH (regeneration phenomena).
- To detect the condition of interest, a PF-based anomaly detection module is implemented using nonlinear model

Anomaly Detection Module: Self-recharge Phenomena

State Equation Dynamic Model

$$\begin{cases} \begin{bmatrix} x_{d,1}(t+1) \\ x_{d,2}(t+1) \end{bmatrix} = f_b \left(\begin{bmatrix} x_{d,1}(t) \\ x_{d,2}(t) \end{bmatrix} + n(t) \right) \\ x_{c1}(t+1) = (1-\beta)x_{c1}(t) + \omega_1(t) \\ x_{c2}(t+1) = 0.95x_{c2}(t) \cdot x_{d,2}(t) + 0.2x_{d,1}(t) + \omega_2(t) \end{cases}$$
$$y(t) = x_{c1}(t) + x_{c2}(t) \cdot x_{d,2}(t) + v(t)$$

$$f_b(x) = \begin{cases} \begin{bmatrix} 1 & 0 \end{bmatrix}^T, \text{ if } \|x - \begin{bmatrix} 1 & 0 \end{bmatrix}^T \| \le \|x - \begin{bmatrix} 0 & 1 \end{bmatrix}^T \| \\ \begin{bmatrix} 0 & 1 \end{bmatrix}^T, \text{ else} \\ \begin{bmatrix} x_{d,1}(0) & x_{d,2}(0) & x_{c1}(0) & x_{c2}(0) \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}^T$$

SOH Estimation Module (Self-recharge Phenomena)

State Equation Dynamic Model

$$\begin{cases} x_1(t+1) = x_1(t) + C \cdot x_2(t) \cdot (a - b \cdot t + t^2)^m + \omega_1(t) \\ x_2(t+1) = x_2(t) + \omega_2(t) \\ x_3(t+1) = \alpha \cdot x_3(t) + \omega_3(t) \end{cases}$$

 $y(t) = x_1(t) + x_3(t) + v(t)$

- $x_1(t)$ is a state representing the fault dimension
- $x_2(t)$ is a state associated with an unknown model parameter
- $x_3(t)$ is a state associated with the capacity regeneration phenomena
- *a*, *b*, *C* and *m* are constants associated to the duration and intensity of the battery load cycle (external input *U*)

SOH Estimation Module (Self-recharge Phenomena)

State Equation Dynamic Model

 $\begin{cases} x_1(k+1) = \eta_c x_1(k) + x_2(k) x_1(k) + w_1(k) \\ x_2(k+1) = x_2(k) + w_2(k) \\ x_3(k+1) = \delta(U(k)) \cdot [w_{31}(k)] + \delta(1 - U(k)) \cdot [x_3(k)w_{31}(k)] + \delta(2 - U(k)) \cdot [x_3(k) + w_{31}(k)] \end{cases}$

 $y(k) = x_1(k) + [\delta(1 - U(k)) + \delta(2 - U(k))]x_3(k) + v(k)$

- η_c is the Coulombic efficiency
- x_1 is a state representing the battery SOH
- x_2 is a state associated with an unknown model parameter
- x_3 is a state associated with the added SOH due to regeneration phenomena
- U is a external input associated with the apparition of regeneration phenomena
- w_1, w_2, w_{31}, w_{32} , and v are iid non-Gaussian noises

- <u>State-of-Charge Prognosis</u>:
 - Probabilistic characterization of usage conditions
 - Real-time state estimation/prognosis
 - Self-tuning model (parameter estimation)
 - PF-based framework allows to compute confidence bounds for SOC predictions
 - Modeling the future usage

 <u>State-of-Charge Prognosis</u>: (Preliminary Results)

• <u>State-of-Charge Prognosis</u>: (Preliminary Results)

8.3) Case Study: PF-based Risk Analysis in Finance

Discontinuosi e' ENE DON'NO. PTVYANI MANAZONE /T

the second strength and

igenieria Eléctrica Actultato de oseneral seas y matemática/ aversidad de canul

 $\sigma_{1}^{2} = \omega + \alpha \sigma_{t-1}^{2} \eta_{t-1}^{2} + \beta \sigma_{t-1}^{2}$

8.3) Case Study: PF-based Risk Analysis in Finance

$$\begin{array}{lcl} \sigma_t^2 &=& \omega + \alpha \sigma_{t-1}^2 \eta_{t-1}^2 + \beta \sigma_{t-1}^2 \\ r_t &=& \mu + \sigma_t \epsilon_t \end{array}$$

1.4 🗖 1.4 Volatility Estimation, iteration 1 r_t: Return process Data Classical PF Risk sensitive PF • σ_t : Stochastic volatility 1.2 • $\mu \in \mathbb{R}$ • $\omega \in \mathbb{R}^+$ 0.8 Volatility • α, β : Parameters in $[0, 1]^2$ 0.6 • $\epsilon_t \sim \mathcal{N}(0, 1)$ 0.4 • $\eta_t \sim \mathcal{N}(0, \sigma)$ 0.2 OL 150 50 100 200 250 300 350 400 Time [days] Phmsociety ⁸¹

Questions?

Contact Information

www.die.uchile.cl

doctorado@die.uchile.cl

magister@die.uchile.cl

