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1.1) PHM, Fault Diagnosis and Failure Prognosis
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PDF Estimate of Crack Length: Fleet-wide Data at 30%, 40% and 50% Torque Values

PDF Estimate of Crack Length: PAX River Test at 40% Torque Values
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Source: Adapted from Inman et al. (2005), p. 6 

 

Reliability of Physics-based model 
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Identification of a dynamic model for 

y(t) using controls and measured 

disturbances u(t),  other plant outputs 

η(t), and delayed plant outputs y(t-d)

Use of  the dynamic model as soft-sensor 

in the absence of  measurement y(t) due 

to unavailable sensor signal

U(t) = [u1(t) u1(t-1) ...  u2(t)  u2(t-1)  ...  ur(t) ur(t-1) ...  ]T

ΠΠΠΠ(t) = [ηηηη1(t) ηηηη1(t-1) ...  ηηηη2(t) ηηηη2(t-1)   ...  ηηηηp(t)  ηηηηp(t-1) ...  ]T

Yd(t) = [y(t-1) y(t-2)  ...  y(t-d)]T
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* CONTAC Ingenieros Ltda., Software “SCAN”

Partial Least Squares (PLS)

• Some examples from a rougher flotation plant, where the copper grade is

the controlled variable (gcc[%]):
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• Recursive algorithm that can find directions of "maximum explicability“,

building a relation between a group of input variables and a set of output

variables.

• Method that eases Model Structure Determination and Parameter

Estimation in linear-in-the-parameters models.

• In addition, it allows to statistically characterize the prediction error in

multivariate models.

• Off-line estimation technique. Model parameters are assumed to be

constant!

Partial Least Squares (PLS)
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• Concept of “Artificial Evolution”

• ft and ht are non-linear mappings.

• x(t) is the state vector.

• ωωωω1(t) and νννν(t) are non-Gaussian distributions

• xαααα(t) is an state associated with an unknown model parameter αααα

• ωωωωαααα(t) is zero-mean random noise
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1.3) Parameter Uncertainty and Particle Filters

 

t t + 1t - 1
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scalar , namely the weight

• Sampled version of the PDF

�Particle: Duple , being

a realization of process state pdf.
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� Steps:

• Predict the “a priori” PDF, using the

model

• Update parameters, given the new

measurement

actual state value

measurement

particles

( ) ( )

0:{ , }i i

t tw x ( )

0:

i

t
x

( )i

tw

11



Loading Profile

Diagnosis Results:
Feature – Crack Length Mapping

Structure for Crack
Progression Model

(FASTRAN / Paris’ Equation 
/ ANSYS / Mc Fadden)

)(L,N, θf
dN

dL
=

Diagnosis Block

Baseline Data

Specifications
Type I error = 5% (designed)

Type II Error = 5% (desired)

50 100 150 200 250
3

3.5

4

4.5
PF Detection Routine

50 100 150 200 250
0

0.5

1

Probability of Failure

2.5 3 3.5 4 4.5
0

5
x 10

-3 Type I Error = 1%. Type II Error =30.5786%. GAG =135

Fisher Discriminant Ratio =3.5529

 

2) Model Uncertainty and PF-based Fault Diagnosis

12



Summary:

• Type I Error (False Positives) fixed at 5%

– Design parameter

• Type II Error (False Negatives)

such that

• Estimated Probability of Fault Condition = 

• Fisher’s Discriminant Ratio
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Effects of Measurement Uncertainty
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Effects of Measurement Uncertainty
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PARTICLE FILTERING-BASED FRAMEWORK

• Estimating the Remaining Useful Life (RUL)

� Generation of Long-Term Predictions

• p-step predictions for a fault indicator

• Prediction entails large-grain uncertainty
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� First Approach for Long-Term Prediction:
(Weight Update Procedure)

– Predicted Trajectory:

– Predicted State pdf @ time t+k

Predicted Conditional pdf (noise model)

 

3) PF-based Failure Prognosis

26



� First Approach for Long-Term Prediction:
(Weight Update Procedure)
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� Second Approach for Long-Term Prediction:         
(Regularization of Predicted State pdf)

• Uncertainty: Resampling procedure for predicted state pdf

• Statistical information given by the position of the particles,

not by the particle weight.

• Use of Epanechnikov kernels
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� Second Approach for Long-Term Prediction:         
(Regularization of Predicted State pdf) 
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� Third Approach for Long-Term Prediction:                

(Projection in Time of State Expectations)

• Simpler in terms of computational effort.

• Particle weights invariant for future time instants.

• When it works, sources of error are negligible compared to:

– model inaccuracies

– wrong assumptions about noise parameters
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Structure for Crack
Progression Model

(FASTRAN / Paris’ Equation 
/ ANSYS / Mc Fadden)
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Particle Filtering: FDI and Failure Prognosis
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• Concept of “Artificial Evolution” revised

• ft and ht are non-linear mappings.

• x(t) is the state vector.

• ωωωω1(t) and νννν(t) are non-Gaussian distributions

• xαααα(t) is an state associated with an unknown model parameter αααα

• ωωωωαααα(t) is zero-mean random noise
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� Proposed Outer Correction Loop:

• 0 < p < 1,  q > 1, and 0 < Th < 1 are scalars 

_ ( )
var{ ( 1)} var{ ( )}, if
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• Formally speaking…

• Assume a nonlinear state equation: 

where

• First Approach:

• Second Approach:
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• Classic PF-based Prognosis Framework:
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• Outer Correction Loops in a PF-based Prognosis Framework:
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• Results for Outer Correction Loops in a case study
(several runs of the algorithm, given the stochastic nature of the 
filtering algorithm)

� Outer Correction Loop that modifies only the variance of model hyper-

parameters:

Mean of ToF Expectation = 540 cycles (ground truth = 650 cycles)
Mean of 95% CI Lower Limit = 503 cycles
Mean of 95% CI Upper Limit = 573 cycles

� Outer Correction Loop that modifies only the expectation and variance of 

hyper-parameters:

Mean of ToF Expectation = 645 cycles (ground truth = 650 cycles)
Mean of 95% CI Lower Limit = 608 cycles

Mean of 95% CI Upper Limit = 681 cycles
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{ }

sup( ) inf( ) sup( ) inf( )

1

1

( )

0 ( ) 1, [1, ),
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� RUL On-line Precision Index (RUL-OPI):

• Considers the relative length of the 95% confidence interval

computed at time t (CIt), when compared to the remaining

useful life.

• Quantifies the concept: “the more data the algorithm
processes, the more precise the prognostic result”

• Good prognostic results are associated to values of
1( ) 1I t ≈
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{ } { }
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sup( ) inf( )

2

2

( )

0 ( ), [1, ),

t

t t

Ground Truth ToF E ToF

CI CI

t

I t e

I t t E ToF t

− 
−  − =

< ∀ ∈ ∈�

� RUL Accuracy-Precision Index:

• Considers the error in the ToF estimate with respect to the

length of the 95% confidence interval computed at time t (Cit)

and penalizes the fact that

• Good prognostic results are associated to values of the
index such that

where is a small positive constant

20 1 ( )I t ε≤ − ≤

ε

{ } { }
t

E ToF Ground Truth ToF>
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� RUL On-line Steadiness Index (RUL-OSI):

• Considers the current estimate for the expectation of the time

of failure (ToF) computed at time t.

• Quantifies the concept: “the more data the algorithm processes,
the more steady the prognostic result”

• Good prognostic results are associated to small values for the
RUL-OSI

{ }( )3

3

( )

( ) 0,

tI t Var E ToF

I t t

=

≥ ∀ ∈�
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• Application examples…

5) Performance Measures for Prognostic Algorithms
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• In order to accurately predict the Remaining Useful Life (RUL) of a 
failing system, one must consider the future, and often 
unpredictable, stresses that will be acting on the system. 

– How do these stresses affect the Remaining Useful Life (RUL)?

– How does uncertainty in these stresses affect the RUL estimate?

– How can uncertainty be quantified?

• Only after addressing these issues, it is possible to answer one
particularly interesting question:

– How can knowledge of uncertainty be used to extend the RUL of 
a failing system?

6) Input Uncertainty in PF-based Prognostic Algorithms
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• A number of elements can alter in a significant manner the RUL of

equipment and components.

• Consider, for example, uncertainty associated to load profiles,

model errors, and measurement noise.

• Thus, RUL uncertainty (∆RUL) can be written as:

• Level 1:

• Level 2:

• Level 3: This reasoning can be extrapolated analogously…
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• Particle Filter (PF) algorithms have become a key 

component of failure prognosis frameworks:

– Strong mathematical foundation

– Allow online uncertainty representation of state estimates and 
long-term predictions in nonlinear systems

– Allow online uncertainty management via the implementation of 
outer feedback correction loops.

• These facts motivate the usage of PF-based uncertainty

measures to quantify, in real time, the impact of load,

environmental, and other stresses for long-term

prediction.
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• If the input of the system is also assumed to be a stochastic process:
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• Dispersion Sensitivity • Confidence Interval Sensitivity
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• Dispersion Sensitivity Approach
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• Confidence Interval Sensitivity Approach
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• QUESTION:
What should the torque load be reduced to in order 
to extended the remaining useful life until time 714 
cycles? 

Case Study:

A critical component (planetary gear carrier 

plate) in a rotorcraft transmission system is 

experiencing a fatigue crack.

The baseline load on the rotorcraft is 120% 

of the maximum recommended  torque.  At 

this load, a failure is predicted to occur at 

time 594 cycles.
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• Confidence Interval Sensitivity Approach
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• Just-in-Time Point vs. RUL Expectations
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� Definition:

• It will also be called a coherent measure of risk in the 

basic sense if it also satisfies
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• Fault Value at Risk (FVaR) and Risk Assessment:
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8.1) Case Study: Battery Diagnostics/Prognostics
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• Data registering two different operational profiles (charge and
discharge) at room temperature (NASA Ames Research Center).

• Charging is carried out in a constant current (CC) mode at 1.5[A]
until the battery voltage reached 4.2[V] and then continued in a
constant voltage mode until the charge current dropped to 20[mA].

• Discharge is carried out at a constant current (CC) level of 2[A]
until the battery voltage fell to 2.5[V].

• The experiments were stopped when the batteries reached end-of-
life (EOL) criteria, which was a 40% fade in rated capacity (from
2 [A-hr] to 1.2[A-hr]).
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• Normal condition reflects the fact that the battery SOH is slowly
diminishing as a function of the number of charge/discharge cycles

• Anomalous condition indicates an abrupt increment in the battery
SOH (regeneration phenomena).

• To detect the condition of interest, a PF-based anomaly detection
module is implemented using nonlinear model
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Anomaly Detection Module: Self-recharge Phenomena

• State Equation Dynamic Model
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SOH Estimation Module (Self-recharge Phenomena)

• State Equation Dynamic Model
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• x1(t) is a state representing the fault dimension

• x2(t) is a state associated with an unknown model parameter

• x3(t) is a state associated with the capacity regeneration phenomena

• a, b, C and m are constants associated to the duration and intensity 

of the battery load cycle (external input U)
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SOH Estimation Module (Self-recharge Phenomena)

• State Equation Dynamic Model

8.1) Case Study: Battery Diagnostics/Prognostics
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• ηc is the Coulombic efficiency

• x1 is a state representing the battery SOH 

• x2 is a state associated with an unknown model parameter

• x3 is a state associated with the added SOH due to regeneration phenomena

• U is a external input associated with the apparition of regeneration phenomena

• w1, w2, w31, w32 , and v are iid non-Gaussian noises
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• State-of-Charge Prognosis:
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• State-of-Charge Prognosis:

– Probabilistic characterization of usage conditions

– Real-time state estimation/prognosis

– Self-tuning model (parameter estimation)

– PF-based framework allows to compute confidence bounds for 
SOC predictions 

– Modeling the future usage
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• State-of-Charge Prognosis:

(Preliminary Results)
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• State-of-Charge Prognosis: (Preliminary Results)

8.2) Case Study: Battery Diagnostics/Prognostics
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Thank You!

Questions?



Contact Information

www.die.uchile.cl
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