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Abstract

This paper focuses on two networked feedback system setups: (i) Multiple-input multiple-output
(MIMO) linear time-invariant (LTI) systems with feedback over a set of MIMO i.i.d. erasure channels,
and (ii) MIMO LTI systems with feedback over signal-to-noise ratio (SNR) constrained additive white
noise channels. We show that, under suitable assumptions, both situations are equivalent from a
second-order statistics point of view. This result establishes a fundamental relationship between the
considered classes of networked systems, allowing one to address design problems involving either SNR
constraints, or data dropouts, in a unified fashion. We illustrate our results by considering a static
state feedback control problem.

1 Introduction
sec:intro

Networked control theory has received much attention in the recent literature [1]. This is due to its practical
implications and also because of its theoretical challenges [1,13]. A key issue within the networked control
paradigm is the understanding of the interplay between control objectives and communications constraints.
This question has been addressed from several perspectives. For example, control problems subject to
data-rate constraints have been explored in [15], the effects of data loss have been studied in [8,20,12,18],
and SNR constraints have been treated in [3, 19, 17].

In this paper, we draw connections between two types of communications constraints, namely data
dropouts and SNR constraints. Data loss is a consequence of transmission errors, fading, congestion or
buffer overflows, which are prevalent in wireless communication links [13, 11]. On the other hand, SNR
constraints appear when dealing with analog communication channels [3, 19]. Our goal is showing that
analysis and design problems involving such constraints are, under suitable assumptions, equivalent from
a second-order statistics point of view.

The idea of analyzing systems interconnected over unreliable channels by considering a statistically
equivalent SNR constrained setup, can be traced back to [23]. In that work, the author studies state
estimation problems for linear systems observed over an erasure channel. For such a setup, [23] constructs
an auxiliary linear system that, when subjected to an instantaneous SNR constraint, yields signals with the
same instantaneous second-order moments as in the original situation. Later, in [14], related results were
presented for a given LTI feedback architecture involving one single-input single-output (SISO) erasure
channel. In contrast to [23], the authors of [14] use a stationary approach and do not study instantaneous
moments. The recent paper [20] extends [14] to arbitrary networked architectures involving one SISO
erasure channel. The main contribution of [20] is an instantaneous and stationary second-order moment
equivalence between feedback systems closed over SISO channels subject to either SNR constraints, or
data dropouts.

Another connection between data loss and SNR constraints can be found in [9]. That paper presents
a method for the design of predictive quantization schemes [10]. By approximating quantization errors
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by an additive white noise source whose variance is subject to an SNR constraint, [9] notes that optimal
designs hinge on the modified Riccati equation studied in [22] in the context of estimation subject to
data loss. This observation, although not further explored in [9], reveals additional connections between
estimation problems subject to either data dropouts or SNR constrains.

In this paper, we consider feedback architectures closed over either multiple MIMO i.i.d. erasure
channels, or multiple MIMO SNR constrained channels. We first show that the instantaneous second-order
moments of any signal in the former setup, are equal to the instantaneous moments of the corresponding
signal in an auxiliary situation that arises when the erasure channels are replaced by gains, followed by
SNR constrained additive white noise channels. As a second contribution, we show that the internal
stability (in the usual sense [24]) of the auxiliary system subject to SNR constraints, and the satisfaction
of a set of inequalities constraints, is equivalent to the mean square stability of the feedback system closed
over erasure channels. Under a mild assumption, we show that the latter inequality constraints can be
replaced by stationary SNR ones. Finally, we consider optimal design problems with a stationary quadratic
cost. We show that optimal control problems over erasure channel are, essentially, equivalent to optimal
control problems over SNR constrained additive noise ones.

The results presented in this paper unveil a fundamental relationship between networked control sys-
tems closed over either erasure or SNR constrained channels. They expand on the preliminary observations
made in [23, 9], and extend [16, 20, 14] to cases where multiple MIMO channel are present.

To illustrate our findings, we study static state feedback control problems over erasure channels. We
show that the SNR constrained perspective yields the same optimal synthesis equations as the approach
presented in [2, Chapter 9], for the control of systems subject to multiplicative noise (see also [5]). Further
illustrations of our results can be found in [20, 21]. A preliminary version of the results in this paper was
presented in [16] for the two-channel case.

The remainder of this paper is organized as follows: Section 2 presents notation. Section 3 describes the
considered setups, while Sections 4–6 present our main results. In particular, Section 4 presents the results
related to instantaneous second-order moments, Section 5 presents results related to stability, and Section
6 studies optimal design problems. Section 7 presents an example, and Section 8 draws conclusions.

2 Notation
sec:notation

R stands for the reals and N0 for the non-negative integers. P {∗} stands for the probability of (∗) and
E {∗} denotes the expectation of (∗). Given a matrix W , WT denotes its transpose and WH its conjugate
transpose. If W is a square matrix, then ρ(W ) refers to its spectral radius. In denotes the n× n identity
matrix, and 0n×m refers to an n × m zero matrix. The notation diag {x1, . . . , xn}, or diag {xi}, refers to
a block diagonal matrix with diagonal blocks given by xi.

We assume that all random processes are real valued and defined for k ∈ N0. We write x as shorthand
for {x(k); k ∈ N0}. For any process x we define: µx(k) , E {x(k)}, Px(k) , E{(x(k) − µx(k))(x(k)
−µx(k))T }, Rx(k+τ, k) , E

{

(x(k + τ) − µx(k + τ))(x(k) − µx(k))T
}

. We refer to Px(k) as the covariance
matrix of x, and to Rx(k + τ, k) as the covariance function of x. We also define the stationary covariance
matrix of x (when it exists) as Px , limk→∞ Px(k). A random variable (process) is a second-order one if
and only if it has finite mean and finite second-order moments (for all time instants k ∈ N0 and also when
k → ∞). We write x⊥⊥ y (resp. x ⊥ y) if and only if x and y are independent (resp. uncorrelated).

3 Setup and Assumptions
sec:setup

This paper aims at establishing a second-order moment equivalence between data dropouts and SNR
constraints in networked control architectures. We first describe the setup involving data dropouts. To
that end, we introduce the following definition (see also, e.g., [8, 20, 12, 18]):

def:drop-channel Definition 1 A MIMO erasure channel is a device with input vθ and output wθ such that, for every
k ∈ N0,

wθ(k) = (θ(k) + P ) vθ(k), (1)
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Figure 1: LTI system with feedback over a MIMO erasure channel. fig:N-mjls
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Figure 2: Auxiliary system that arises when, in Figure 1, one replaces the MIMO erasure channel by a
gain P and a MIMO additive noise channel. fig:N-snr

where θ(k) , diag {θi(k)Ini
}, P , diag {piIni

}, i ∈ {1, . . . , c}, ni is a positive integer, θi is a sequence of
i.i.d. random variables, θi(k) ∈ {−pi, 1 − pi}, P {θi(k) = 1 − pi} = pi ∈ (0, 1), and θi ⊥⊥ θj for i 6= j. �

Erasure channels are idealized abstractions that allow one to capture the essential features of data loss
[13,11]. We note that a more natural definition of erasure channel would be such that wθ(k) = θ̃(k)vθ(k),

where θ̃(k) = diag
{

θ̃i(k)Ini

}

, and θ̃i is as θi, except for the fact that it takes values in {0, 1} instead of

{−pi, 1 − pi}. We adopt the (equivalent) description in Definition 1 to streamline our derivations.
Consider the feedback loop of Figure 1, where Nθ is an LTI system described by





xθ(k + 1)
eθ(k)
vθ(k)



 =





A Bd Bw

Ce Dde Dwe

Cv Ddv 0









xθ(k)
d(k)
wθ(k)



 , xθ(0) = xo, k ∈ N0, (2) eq:ve-Nt

xθ is the corresponding nx-dimensional state, xo is the initial state, d models disturbances, eθ is an ne-
dimensional output, and the link between vθ and wθ is given by a MIMO erasure channel. In (2), all
signals are allowed to have arbitrary dimensions, and the real matrices (A, B∗, C∗, D∗∗) are of appropriate
dimensions. Consistent with Definition 1, we introduce the partitions

vθ ,
[

vT
θ1

. . . vT
θc

]T
, wθ ,

[

wT
θ1

. . . wT
θc

]T
, Bw ,

[

Bw1 . . . Bwc

]

, (3) eq:def-vwi

where vθi
and wθi

take values in R
ni , and Bwi

∈ R
nx×ni .

We now describe an alternative setup involving additive noise channels.

def:snr-channel Definition 2 A MIMO additive noise channel is a device with input vΓ and output wΓ such that, for
every k ∈ N0,

wΓ(k) = q(k) + vΓ(k), (4) eq:qp-1

where q(k) , [ q1(k)T . . . qc(k)T ]T , qi is a zero-mean white noise sequence taking values in R
ni , and qi ⊥ qj

for i 6= j. �
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The above additive noise channel is free of constraints and, as such, of no much interest by itself. In
the remainder of the paper we will impose suitable constraints on the channel noise q to derive our results.

Given Nθ as in (2) and a MIMO erasure channel, we define the LTI system1 NΓ , diag {Ine
, P}Nθ

described by





xΓ(k + 1)
eΓ(k)
vΓ(k)



 =





A Bd Bw

Ce Dde Dwe

PCv PDdv 0









xΓ(k)
d(k)

wΓ(k)



 , xΓ(0) = xo, k ∈ N0, (5) eq:ve-Nsnr

where (·)Γ has the same dimension as (·)θ and plays, for NΓ, the role that (·)θ played for Nθ, P is as
in Definition 1, and (A, B∗, C∗, D∗∗), d and xo are as in (2). Consistent with (3), we also introduce the
partitions

vΓ ,
[

vT
Γ1

. . . vT
Γc

]T
, wΓ ,

[

wT
Γ1

. . . wT
Γc

]T
, (6) eq:def-gamma

where vΓi
and wΓi

take values in R
ni .

Figure 2 shows the feedback system that arises when one considers NΓ and uses a MIMO additive noise
channel as the link between vΓ and wΓ. We note that the same feedback scheme arises if one replaces, in
Figure 1, the MIMO erasure channel by a gain P followed by a MIMO additive noise channel.

We will work under the following standard assumptions:

assu:xo-d Assumption 1 The initial state xo is a zero-mean second-order random variable having covariance Po ≥
0, d is a zero-mean second-order white noise sequence having covariance Pd ≥ 0, xo ⊥ d, θ⊥⊥ (xo, d), and
q ⊥ (xo, d). �

4 Instantaneous Second-Order Moment Equivalence
sec:eqv-inst

In this section, we show that the first and second-order moments of the signals in the switched system of
Figure 1 can be calculated by resorting to the analysis of the simpler LTI system of Figure 2.

teo:Rxs Theorem 1 Consider the switched system of Figure 1, where Nθ has the state space description in (2)
and the link between vθ and wθ is given by a MIMO erasure channel. Also consider the LTI system of
Figure 2, where NΓ has the description in (5) with P as in Definition 1, and the link between vΓ and wΓ

is given by a MIMO additive noise channel. If Assumption 1 holds, then µxΓ(k) = µxθ
(k) = 0 for every

k ∈ N0 and if, in addition,

Pqi
(k) = p−1

i (1 − pi)PvΓi
(k), ∀k ∈ N0, ∀i ∈ {1, . . . , c}, (7) eq:snr-e

then RxΓ(k + τ, k) = Rxθ
(k + τ, k) for every k, τ ∈ N0.

Proof: The fact that µxΓ(k) = µxθ
(k) = 0 is immediate from (2), (5), and Assumption 1. To prove our

second claim, one can exploit Assumption 1 and proceed as in the proof of Lemma 6.3 in [8] to show that
the covariance matrix of the state of Nθ in Figure 1 satisfies

Pxθ
(k + 1) = AoPxθ

(k)AT
o + BoPdB

T
o + Bw diag

{

pi(1 − pi)η
T
i

(

CvPxθ
(k)CT

v + DdvPdD
T
dv

)

ηi

}

BT
w , (8) eq:teq2-4

where

Ao , A + BwPCv, Bo , Bd + BwPDdv, ηT
i ,

[

0ni×(n1+···+ni−1) Ini
0ni×(ni+1+···+nc)

]

. (9) eq:def-eta

Consider now the auxiliary situation of Figure 2. Given (5), (4), Assumption 1, and the properties of
q, we have that

PxΓ(k + 1) = AoPxΓ(k)AT
o + BoPdB

T
o + BwPq(k)BT

w . (10) eq:teq2-71

1We will abuse notation and also use Ni, i ∈ {θ, Γ}, as an operator relating (d, wi) with (ei, vi).
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Also, we have that the covariance matrix of each component vΓi
of vΓ in Figure 2 satisfies (recall (6))

PvΓi
(k) = p2

i η
T
i

(

CvPxΓ(k)CT
v + DdvPdD

T
dv

)

ηi. (11) eq:pvs-lti

Thus, if (7) holds, then it follows from (8), (10) and (11) that both the state covariance matrix in the
switched system of Figure 1, and the state covariance matrix in the LTI system of Figure 2, satisfy the
same recursive equations. Since, in addition, xθ(0) = xΓ(0), then PxΓ(k) = Pxθ

(k) for every k ∈ N0.
To complete the proof, we note that it is straightforward to show that the state covariance functions in

the switched system of Figure 1, and in the LTI system of Figure 2, are given by Rxθ
(k+τ, k) = Aτ

oPxθ
(k)

and RxΓ(k + τ, k) = Aτ
oPxΓ(k), respectively. Since PxΓ(k) = Pxθ

(k), our last claim follows. �

The following immediate consequence of Theorem 1 relates the first and second-order moments of the
output signals eθ and eΓ in the systems of Figures 1 and 2:

coro:Rys Corollary 1 Consider the setup and assumptions of Theorem 1. Then, µeΓ(k) = µeθ
(k) = 0 for every

k ∈ N0 and if, in addition, (7) holds, then ReΓ(k + τ, k) = Reθ
(k + τ, k) for every k, τ ∈ N0. �

Theorem 1 and Corollary 1 state that the first and second-order moments of the state, and of any
output of the switched system of Figure 1, can be studied by considering an auxiliary situation where
the MIMO erasure channel has been replaced by a gain equal to P , followed by a MIMO additive noise
channel subject to the instantaneous SNR constraints in (7) (see Figure 2). These results extend Theorem
1 and Corollary 1 in [16], and Lemma 9 in [20], to the multiple MIMO channel case.

5 Stability
sec:stability

The results presented above involve instantaneous moments only, providing no convergence or stability
conditions. In this section, we show that there exists a relationship between the internal stability of the
LTI system of Figure 2 (defined as usual [24]) and the following standard stability notion for the switched
system of Figure 1 (see also [4]):

def:mss Definition 3 Consider the switched system of Figure 1, where Nθ is described by (2) and the link between
vθ and wθ is given by a MIMO erasure channel. The resulting system is mean square stable (MSS) if
and only if, for any initial state xo and disturbance d satisfying Assumption 1, there exist µxθ

∈ R
nx

and Pxθ
∈ R

nx×nx , Pxθ
≥ 0, both not depending on (xo, θ(0)), such that limk→∞ µxθ

(k) = µxθ
and

limk→∞ Pxθ
(k) = Pxθ

. �

Our results make use of the following technical lemma:

lema:fact Lemma 1 Consider θ and P as in Definition 1 and matrices A, Bw, Cv, Bw1 , . . . , Bwc
as in (2) and (3).

Define δi , P {θ(k) = Ti} and Ai , A+Bw(Ti +P )Cv, where {T1, . . . , T2c} is the set of all possible values
for θ(k). Then, for any M ≥ 0 of appropriate dimensions,

2c

∑

i=1

δiAiMAT
i = (A + BwPCv)M (A + BwPCv)

T
+

c
∑

i=1

pi(1 − pi)Bwi
ηT

i CvMCT
v ηiB

T
wi

. (12) eq:fact1

Proof: Consider the switched system

x̃(k + 1) = (A + Bw(θ(k) + P )Cv) x̃(k), (13) eq:mjls-aux

where x̃(0) is second-order and Px̃(0) = M . Under our assumptions, a standard manipulation [4, p. 32]
shows that

Px̃(k + 1) =

2c

∑

i=1

δiAiPx̃(k)AT
i . (14) eq:varianza-libro
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On the other hand, a procedure similar to that employed to derive (8) allows one to conclude from (13)
that

Px̃(k + 1) = AoPx̃(k)AT
o +

c
∑

i=1

pi(1 − pi)Bwi
ηT

i CvPx̃(k)CT
v ηiB

T
wi

, (15) eq:fact4

where Ao is as in (9) and we used (3). The result follows upon making k = 0 in both (14) and (15). �

We are now in a position to prove the main result of this section:

teo:est Theorem 2 Consider the setup and assumptions of Theorem 1. Then, the switched system of Figure 1
is MSS if and only if the LTI system of Figure 2 is internally stable and there exist W = diag {Wi} > 0,
Wi ∈ R

ni×ni , and Q ≥ 0 such that, for every i ∈ {1, . . . , c},

pi(1 − pi)η
T
i CvQCT

v ηi < Wi, (16) eq:teost-11

and

(A + BwPCv)Q(A + BwPCv)T − Q + BwWBT
w = 0. (17) eq:teost-1

Proof:

1. Recall the definition of Ao and ηi in (9). If the LTI system is internally stable (i.e., if ρ(Ao) < 1),
then there exists Y > 0 such that

AoY AT
o < Y. (18) eq:teost-2

Also, given (16), there exists a sufficiently small ε > 0 such that

pi(1 − pi)η
T
i Cv(Q + εY )CT

v ηi < Wi, (19) eq:teost-3

where Q satisfies (17).

Using the notation introduced in Lemma 1, we have that the switched system is MSS if and only if
there exists an M > 0 such that (see Corollary 3.26 in [4])

2c

∑

i=1

δiAiMAT
i < M. (20) eq:suma

To complete this part of the proof we next show that (20) holds for M = Q + εY > 0. Indeed,
Lemma 1 yields

2c

∑

i=1

δiAi(Q + εY )AT
i = Ao(Q + εY )AT

o +
c
∑

i=1

pi(1 − pi)Bwi
ηT

i Cv(Q + εY )CT
v ηiB

T
wi

(a)

< Ao(Q + εY )AT
o +

c
∑

i=1

Bwi
WiB

T
wi

(b)
= εAoY AT

o + Q

(c)

< Q + εY, (21) eq:desM

where (a) follows from (19), (b) follows from (17) and the partition for Bw in (3), and (c) follows
from (18).

2. If the switched system is MSS, then (20) and (12) imply that ρ(Ao) < 1 (recall the definitions in
(9)) and, hence, the LTI system is internally stable. On the other hand, if the switched system is
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MSS, then Corollary 3.26 and Theorem 3.33 in [4] imply that (again, we use the notation in Lemma
1)

X =

2c

∑

i=1

δiAiXAT
i + V (22) eq:lyapunov-V

admits a unique solution X for any V ≥ 0. Set V = Bw diag
{

pi(1 − pi)η
T
i ηi

}

BT
w ≥ 0. Given

Lemma 1, (22) implies that

X = AoXAT
o + Bw diag

{

pi(1 − pi)η
T
i CvXCT

v ηi

}

BT
w + Bw diag

{

pi(1 − pi)η
T
i ηi

}

BT
w (23) eq:lyapuniov-X-epsilon

admits a unique solution X . Set W = diag {Wi} with

Wi = pi(1 − pi)η
T
i

(

CvXCT
v + I

)

ηi > pi(1 − pi)η
T
i CvXCT

v ηi ≥ 0 (24) eq:wi-candidato

(clearly, W > 0). We conclude from (23) and (24) that W > 0 satisfies (16) and (17) with Q = X .
The proof is now complete. �

Remark 1 Lemma 1 is key for proving Theorem 2 and the proof of that lemma exploits the instantaneous
equivalence of Theorem 1. Thus, in contrast to Theorem 10 in [20], Theorem 2 is not an extension of the
purely stationary approach used in [14]. If one were to use those ideas here, then one should be able to
prove Lemma 1 using a direct algebraic approach, which seems rather difficult. �

Theorem 2 shows that, under Assumption 1, the internal stability of the auxiliary LTI system of Figure
2, and the satisfaction of a set of inequality constraints, is equivalent to the MSS of the switched system
of Figure 1. This result extends Theorem 10 in [20] to the multiple MIMO channel case.

We next present a result that serves as an alternative to Theorem 2. The result makes use of an
additional assumption, but simplifies matters (see also Theorem 2 in [16] for a preliminary two-channel
version).

coro:estabilidad-alternativa Corollary 2 Consider the setup and assumptions of Theorem 1. Then:

• If the switched system of Figure 1 is MSS, then the system of Figure 2 is internally stable and the
variance of q can be chosen to be a constant satisfying2

Pqi
(k) = Pqi

= p−1
i (1 − pi)PvΓi

, ∀i ∈ {1, . . . , c}, (25) eq:pq-est

where PvΓi
denotes the stationary covariance of vΓi

.

• If the LTI system of Figure 2 is internally stable, the variance of q satisfies (25), and

1

2π

∫ π

−π

TdvPdT
H
dvdω > 0, (26) eq:desigualdad-clave

where Tdv(e
jω) , Cv(ejωI − A − BwPCv)−1(Bd + BwPDdv) + Ddv, then the switched system of

Figure 1 is MSS.

Proof:

1. If the switched system of Figure 1 is MSS, then the LTI system of Figure 2 is internally stable (see
Theorem 2). To complete the proof, we next show the existence of a choice for Pqi

satisfying (25).
Set

Pqi
= P θ

qi
, pi(1 − pi)η

T
i

(

CvPxθ
CT

v + DdvPdD
T
dv

)

ηi ≥ 0 , (27) eq:pqi-mjls

2Consistent with the notation introduced in Section 2, we omit here the argument k to refer to stationary covariance
matrices.
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where, since the switched system is MSS, Pxθ
is the unique solution of (see (8) and Corollary 3.26

in [4])

Pxθ
= AoPxθ

AT
o + BoPdB

T
o + Bw diag

{

pi(1 − pi)η
T
i

(

CvPxθ
CT

v + DdvPdD
T
dv

)

ηi

}

BT
w . (28) eq:pxest-mjls

where Ao and Bo are as in (9). If Pqi
is as in (27), then, since the LTI system is internally stable,

the state xΓ of the LTI system of Figure 2 has a stationary covariance given by the unique solution
to

PxΓ = AoPxΓAT
o + BoPdB

T
o + Bw diag

{

P θ
qi

}

BT
w . (29) eq:pxest-lti

Given (27)–(29), and the unicity of both Pxθ
and PxΓ , we conclude that PxΓ = Pxθ

. Thus, (27)
becomes equivalent to Pqi

= pi
−1(1 − pi)PvΓi

and the result follows.

2. If the LTI system of Figure 2 is internally stable and there exist Pqi
such that (25) holds, then

Pqi
= p−1

i (1 − pi)PvΓi
= pi(1 − pi)η

T
i

(

CvPxΓCT
v + DdvPdD

T
dv

)

ηi (30) eq:pqi-lti

where PxΓ satisfies (again, we use the definitions in (9))

PxΓ = AoPxΓAT
o + BoPdB

T
o + BwPqB

T
w , (31) eq:recPx-st-mjls

and ρ(Ao) < 1. Thus,

PxΓ =

∞
∑

i=0

Ai
o

[

Bo Bw

]

diag {Pd, Pq}
[

Bo Bw

]T
Ai

o

T
. (32) eq:serie

Set Wi = Pqi
and note that (30), (32) and (26) immediately yield

Wi = pi(1 − pi)η
T
i

[

Cv

(

∞
∑

i=0

Ai
oBoPdB

T
o Ai

o

T

)

CT
v + DdvPdD

T
dv + Cv

(

∞
∑

i=0

Ai
oBwPqB

T
wAi

o

T

)

CT
v

]

ηi

> pi(1 − pi)η
T
i Cv

(

∞
∑

i=0

Ai
oBwPqB

T
wAi

o

T

)

CT
v ηi ≥ 0. (33)

We thus conclude that W = diag {Wi} = Pq > 0 satisfies (16) and (17) with

Q =

∞
∑

i=0

Ai
oBwPqB

T
wAi

o

T
. (34)

The proof is now complete. �

rem:contraejemplo Remark 2 If, in Part 2 of Corollary 2, condition (26) is not satisfied, then it is not possible to ensure
that the switched system of Figure 1 is MSS. Indeed, assume that c = 1, Pd = 0, and that Nθ in (2) is
such that A = 0.7, Bw = 1, Cv = 0.55 (the remaining matrices are immaterial). If p = 0.5, then the
LTI system of Figure 2 is internally stable and the unique Pq1 satisfying (25) is Pq1 = 0. However, since
Pd = 0, (26) is not satisfied. For the above choice of parameters, the switched system of Figure 1 is not
MSS, as the reader can readily verify (see also Remark 3.7 in [4]). �

rem:desigualdad-clave Remark 3 In (26), Tdv is the closed loop transfer function between d and vΓ in the architecture of Figure
2. Thus, satisfying condition (26) is equivalent to guaranteeing that the covariance matrix of the part
of the signal vΓ that is due to d, is positive definite. A sufficient condition for this to happen is that
DdvPdD

T
dv > 0. �

Corollary 2 states, under a rather mild assumption, that the switched system of Figure 1 will be MSS
if and only if the LTI feedback system of Figure 2 is internally stable and the stationary SNR constraints
in (25) are satisfied. A consequence of this result is explored in Section 6 below.
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6 Stationary second-order Moment Equivalence and Optimal

Designs
sec:stationary-optimal-designs

So far, we have studied the relationship between the instantaneous second-order moments of the signals
in the feedback systems of Figures 1 and 2, and have also established a connection between the stability
of both setups. In this section, we draw connections between optimal control problems for the considered
architectures when a stationary performance measure is used. We begin with the following observation:

coro:eq-st Corollary 3 Consider the setup and assumptions of Theorem 1 and assume, in addition, that the switched
system of Figure 1 is MSS and that the LTI system of Figure 2 is internally stable. If, instead of satisfying
(7), Pqi

(k) is constant and satisfies (25), then PxΓ = Pxθ
and PeΓ = Peθ

.

Proof: If the switched system is MSS, then Pxθ
exists and is the unique solution to (28). If, on the

other hand, the LTI system is internal stable and (25) holds, then PxΓ satisfies (31) with Pq as in (30).
Equations (28) and (30)-(31) have an identical structure and, since (28) admits a unique solution, the
result follows. �

Corollary 3 presents a stationary second-order moment equivalence between the systems of Figures 1
and 2. As such, it corresponds to the stationary counterpart of Theorem 1. Note that Corollary 3 requires
the SNR constraint in (7) to hold in steady state only, and not for every time instant. (The latter stronger
condition is necessary for the instantaneous equivalence presented in Theorem 1 and Corollary 1.) This
result extends Corollary 11 in [20], and Corollary 2 in [16], to the multiple MIMO erasure channel case.

In order to establish a connection between the optimal design of the architectures of Figures 1 and 2,
we introduce the set Ω containing all Nθ with the state space description in (2), and having a prescribed
structure. The motivation behind the definition of Ω lies in the fact that, in most cases of interest, only
certain sub-systems of Nθ can be designed whilst the remaining ones are fixed. For example, in a one
degree-of-freedom dynamic output feedback control problem, where measurements are sent over an erasure
channel, Nθ could be chosen so that vθ = eθ = d + GCwθ, where G is the (fixed) plant model and C is
the (to be designed) controller.

Consider the setup of Figure 1 where the link between vθ and wθ is given by a MIMO erasure channel
and Assumption 1 holds. Define

Jθ(Nθ) , trace {Peθ
} , J

opt
θ , inf

Nθ∈Sθ

Jθ(Nθ), (35) eq:def-J-theta

where Sθ contains all Nθ in Ω that render the resulting switched system MSS. Also, consider the setup of
Figure 2 where the link between vΓ and wΓ is given by a MIMO additive noise channel, and Assumption
1 holds. Define

JΓ(NΓ, Pqc
1
) , trace {PeΓ} , J

opt
Γ , inf

(NΓ,Pqc
1
)∈F

JΓ(NΓ, Pqc
1
), (36) eq:def-J-gamma

where Pqc
1

is shorthand for Pq1 , . . . , Pqc
, and F contains all NΓ = diag {Ine

, P}Nθ, with Nθ in Ω, and
all positive-semidefinite Pq1 , . . . , Pqc

such that: (a) the resulting LTI feedback system is internally stable,
(b) (25) holds, and (c) there exist Q ≥ 0 and W = diag {Wi} > 0 satisfying (16) and (17). In (36), the
decision variables include the LTI system NΓ and the channel noise variance matrices Pq1 , . . . , Pqc

. The
latter are to be chosen so as to satisfy the SNR constraints in (25).

coro:equivalencia-diseos Corollary 4 Consider the setup and assumptions of Theorem 1. Then, the optimization problems in (35)
and (36) are equivalent, i.e:

1. The optimization problem in (35) is feasible if and only if the optimization problem in (36) is feasible.

2. The optimal values of the optimization problems in (35) and (36) are equal, i.e., J
opt
θ = J

opt
Γ .

3. For any ε > 0, if Nθ ∈ Sθ is such that Jθ(Nθ) < J
opt
θ + ε, then there exist Pqc

1
such that

(diag {Ine
, P}Nθ, Pqc

1
) ∈ F and JΓ(diag {Ine

, P}Nθ, Pqc
1
) < J

opt
Γ + ε. (37)
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Similarly, if ε > 0 and (NΓ, Pqc
1
) ∈ F is such that JΓ(NΓ, Pqc

1
) < J

opt
Γ + ε, then

diag
{

Ine
, P−1

}

NΓ ∈ Sθ and Jθ(diag
{

Ine
, P−1

}

NΓ) < J
opt
θ + ε. (38)

Proof: Immediate from Theorem 2, Corollaries 2 and 3, and the relationship between NΓ and Nθ (see
(2), (5) and Figure 2). �

Corollary 4 states that the optimal design of the switched system of Figure 1 is equivalent to the
optimal design of the LTI system of Figure 2, subject to both the stationary SNR constraints in (25), and
the additional constraints in (16) and (17). The next result uses Corollary 2 to remove this additional
constraints:

coro:equivalencia-diseos-simple Corollary 5 Consider the setup and assumptions of Theorem 1. Assume, in addition, that there exists
δ > 0 such that any Nθ ∈ Sθ achieving Jθ(Nθ) < J

opt
θ +δ, and any (NΓ, Pqc

1
) ∈ F achieving JΓ(NΓ, Pqc

1
) <

J
opt
Γ + δ, are such that (26) holds. Then, the optimization problem in (35) is equivalent to the problem of

finding

Ĵ
opt
Γ , inf

NΓ∈SΓ
0≤Pqi

<∞

PvΓi
=pi(1−pi)

−1Pqi

JΓ(NΓ, Pqc
1
), (39) eq:J-gamma-hat

where SΓ contains all NΓ = diag {Ine
, P}Nθ, with Nθ in Ω, that render the LTI system of Figure 2

internally stable.

Proof: Immediate from Corollaries 2, 3, and their proofs. �

Remark 4 In Corollary 5, the equivalence between the problems in (35) and (39) is to be understood,
mutatis mutandis, in the sense described in Corollary 4. (We note that, in the present case, the claim
made in the third point of the enumeration in Corollary 4 holds only for ε ∈ (0, δ).) �

Remark 5 If the additional assumption in Corollary 5 does not hold, and the problem in (35) is feasible
(resp. the problem in (39) is unfeasible), then the problem in (39) is also feasible (resp. the problem in (35)
is also unfeasible). This is a consequence of Part 1 in Corollary 2. On the other hand, if the additional
assumption in Corollary 5 does not hold, and the problem in (35) is unfeasible (resp. the problem in (39)
is feasible), then no conclusions regarding the problem in (39) (resp. the problem in (35)) can be drawn
from our results (see Remark 2). �

Remark 6 If the additional assumption in Corollary 5 does not hold, then one can always perturb the
problem setup by adding white noise to the output vθ of Nθ in both Figures 1 and 2. This guarantees, for
the perturbed setup, the satisfaction of (26) at the cost of suboptimality (see also Remark 3). �

Corollary 5 is, in our view, the most useful result in this paper. It states that optimal control problems
involving MIMO LTI systems and a MIMO erasure channel are, essentially, equivalent to optimal control
problems involving MIMO LTI systems and a MIMO additive noise channel subject to stationary SNR
constraints. The latter problem setup includes the channel noise covariance matrices as decision variables,
and is thus slightly non-standard. A solution strategy has been reported in [19] for the single SISO
channel case. The static state feedback case is touched in Section 7 below. We also note that similar
SNR constrained problems arise when designing optimal quantization schemes (see, e.g., [9,10,6] and the
references therein).

Our results unveil a fundamental relationship between networked control system design problems over
either erasure, or SNR constrained channels. They expand on preliminary observations made in [23, 9],
and extend [16, 20, 14] to general feedback architectures involving multiple MIMO erasure channels. In
particular, Corollary 5 generalizes an idea first explored by us in [20, Theorem 15] for a particular control
architecture involving SISO channels (see also [21] for an application to estimation problems).
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x̄θūθ

Figure 3: Networked control system comprising a MIMO erasure channel and a static state feedback
control law. fig:general-MJLS

7 An Application: Optimal State Feedback Designs
sec:state-fbck

This section considers a static state feedback optimal control problem, where communication takes place
over a MIMO erasure channel. This problem can be solved by adapting results on the control of systems
with multiplicative noise [2, 5]. We will recover such solution by using the SNR equivalence developed in
previous sections.

Consider the networked control system of Figure 3, where G is described by3





x̄θ(k + 1)
ēθ(k)
v̄θ(k)



 =





Ā B̄d B̄u B̄w

C̄e 0 0 0
C̄v 0 D̄uv 0













x̄θ(k)
d(k)
ūθ(k)
w̄θ(k)









, x̄θ(0) = xo, k ∈ N0, (40) eq:state-P-theta

x̄θ is the nx̄-dimensional state, xo is the initial state, d models disturbances, ūθ is the nū-dimensional
controller output, ēθ is a signal related to closed loop performance, and the link between v̄θ and w̄θ is
given by a MIMO erasure channel. In (40), all signals are allowed to have arbitrary dimensions, and
(Ā, B̄∗, C̄∗, D̄uv) are real matrices of appropriate dimensions. We consider a static state feedback control
law, i.e., we assume that

ūθ(k) = Kx̄θ(k), ∀k ∈ N0, (41) eq:ley-de-control-theta

where K is an nū × nx̄ real matrix.
Our aim is to design the gain K so as to minimize the variance of ēθ while guaranteeing the MSS of

the resulting feedback system. Formally, we are interested in finding, for the setup described above and
under Assumption 1,

J̄
opt
θ , inf

K∈Kθ

trace {Pēθ
} , (42) eq:jopt-mjls

where Pēθ
is the stationary covariance matrix of ēθ, and

Kθ , {K ∈ R
nū×nx̄ : the system of Figure 3 is MSS}. (43)

It is fairly easy to proceed as in [2, Chapter 9] to show that the problem in (42) is feasible if and only
if the following convex optimization problem is feasible:eq:lmis

Find: ρ , inf
X,Λ,Z

trace {Λ} (44a)

3Given that our focus is on second-order statistics, we assume, without loss of generality, that there exists no direct
feedthrough from d to (ēθ , v̄θ), nor from (d, ūθ, w̄θ) to ēθ.
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ēθ
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ūΓ x̄Γ

q

v̄Γw̄Γ

P
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Figure 4: LTI system that arises when the MIMO erasure channel of Figure 3 is replaced by a gain P and
a MIMO additive noise channel. fig:general-SNR

subject to: X > 0, Λ > 0,

[

Λ C̄eX

? X

]

> 0, (44b) eq:primeras-lmis





















X − B̄dPdB̄
T
d ĀoX + B̄oZ Y1 Y2 · · · Yc

? X 0 0 · · · 0
? ? X 0 · · · 0

? ? ? X
...

? ? ? ?
. . . 0

? ? ? ? ? X





















> 0, (44c) eq:segundas-lmi

where Āo , Ā + B̄wPC̄v, B̄o , B̄u + B̄wPD̄uv, Yi ,
√

pi(1 − pi)B̄wi
ηT

i (C̄vX + D̄uvZ), i ∈ {1, . . . , c},
? corresponds to entries that can be inferred by symmetry, ηi is as in (9), B̄wi

∈ R
nx̄×ni are such that

B̄w = [ B̄w1 . . . B̄wc
], and the remaining matrices are as in (40). Moreover, if the problem in (42) is feasible

and (Xo, Λo, Zo) denotes the optimal value of (X, Λ, Z) in the optimization problem defined by (44), then
J̄

opt
θ = ρ and the optimal feedback gain K, say K

opt
θ , is such that K

opt
θ = ZoX

−1
o .

We next use Corollary 5 to show that one can arrive at the characterization of the solution to the
problem in (42) presented in (44), by focusing on an SNR constrained optimal control problem. Consider
the setup of Figure 4, where we have replaced the MIMO erasure channel in Figure 3 by a gain equal to
P , followed by a MIMO additive noise channel (see also Figure 2). Define

J̄
opt
Γ , inf

K∈KΓ
0≤Pqi

<∞

Pv̄Γi
=pi(1−pi)

−1Pqi

trace {PēΓ} , (45) eq:prob-snr

where i = 1, . . . , c, PēΓ is the stationary covariance matrix of ēΓ, KΓ , {K ∈ R
nū×nx̄ : the LTI system

of Figure 4 is internally stable, i.e., ρ(Āo + B̄oK) < 1}, and p1, . . . , pc are the successful transmission
probabilities of the MIMO erasure channel.

For any feasible (K, Pqc
1
), we have that the stationary variances of x̄Γ, ēΓ and v̄Γ in Figure 4 satisfy

Px̄Γ = (Āo + B̄oK)Px̄Γ(Āo + B̄oK)T + B̄dPdB̄
T
d + B̄wPqB̄

T
w , (46) eq:var-x-ej1

PēΓ = C̄ePx̄ΓC̄T
e , (47) eq:var-e-ej1

Pqi
= p−1

i (1 − pi)Pv̄Γi
= pi(1 − pi)η

T
i (C̄v + D̄uvK)Px̄Γ(C̄v + D̄uvK)T ηi. (48) eq:var-Pq-ej1

By making the SNR constraints in (48) explicit, (46) reduces to

Px̄Γ = (Āo + B̄oK)Px̄Γ(Āo + B̄oK)T

+

c
∑

i=1

pi(1 − pi)B̄wi
ηT

i (C̄v + D̄uvK)Px̄Γ(C̄v + D̄uvK)T ηiB̄
T
wi

+ B̄dPdB̄
T
d . (49) eq:var-x-ej2
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Assume now that, when restated in terms of the current setup and variables, the additional assumptions
introduced in Corollary 5 hold. Then, Corollary 2 guarantees that any (sufficiently close to) optimal choice
for (K, Pqc

1
) renders the switched system of Figure 3 MSS. We can thus focus, without loss of generality,

on such (K, Pqc
1
). For any such choice of parameters, the operator Ψ, defined via

Ψ (M) , (Āo + B̄oK)M(Āo + B̄oK)T +
c
∑

i=1

pi(1 − pi)B̄wi
ηT

i (C̄v + D̄uvK)M(C̄v + D̄uvK)T ηiB̄
T
wi

, (50) eq:operador

is stable (i.e., for any M > 0, Ψk(M) → 0 as k → ∞; see Corollary 3.26 and Theorem 3.33 in [4], and also
Lemma 2.1 in [5]). Hence, (49) admits a unique solution for Px̄Γ given by Px̄Γ =

∑∞

i=0 Ψi(B̄dPdB̄
T
d ) [5].

The facts in the above paragraph allow one to use a standard manipulation (see, e.g., [7, Section 6.4])
to show, starting from (47) and (49), that the optimization problem in (45) is equivalent to the one of
findingeq:pre-lmis-snr

inf
X,Λ,Z

trace {Λ} (51a)

subject to: X > 0, Λ > 0, Λ > C̄eXC̄T
e , (51b) eq:primeras-lmis-snr

X > (Āo + B̄oK)X(Āo + B̄oK)T

+

c
∑

i=1

pi(1 − pi)B̄wi
ηT

i (C̄v + D̄uvK)X(C̄v + D̄uvK)T ηiB̄
T
wi

+ B̄dPdB̄
T
d . (51c) eq:segundas-lmi-snr

The above problem can be shown to be equivalent to the problem in (44) upon using Schur complements
[7, 2], a trivial congruence transformation, and by defining Z , KX . We have thus verified Corollary 5
for the state feedback architecture considered here.

Example 1 Assume that G in (40) is such that

Ā =

[

0.8 0
0 1.2

]

, B̄d = B̄w =

[

1 0
0 0.5

]

, B̄u = 0, C̄e =
[

1 1
]

, C̄v =

[

0 0
1 0

]

, D̄uv =

[

1
0

]

,

and that d is zero-mean white noise with unit covariance matrix. For this choice of parameters, we solved
the problem in (42) by using the formulation in (44). The results are shown in Figure 5, where the optimal
cost J̄

opt
θ is shown as a function of (p1, p2). In Figure 5, we also plot an estimate of trace {Pēθ

} obtained by
simulating the equivalent (stationarily) SNR constrained system. (The plots corresponds to averages over
one hundred 104-samples-long simulations.) The simulation results match our theoretical findings quite
well. We also compared the simulated stationary channel SNRs in each channel with the corresponding
theoretical values, namely with pi(1 − pi)

−1 (not shown here). Again, the simulation results matched our
theoretical ones. �

8 Conclusions
sec:conclusions

This paper has established a second-order moment equivalence between networked control systems subject
to either data loss or SNR constraints. We have explored both the instantaneous and stationary regimes,
as well as stability properties, yielding a set of results that allow one to deal with many situations of
interest. The relevance of our results is twofold. First, it simplifies the analysis and design of networked
control systems subject to data loss, allowing one to use elementary LTI system analysis and design tool.
Second, it allows one to immediately translate results valid in either of the considered networked setups,
into results valid in the other (see also [20, 21]).

Further work should focus on more general networked design problems. Also relevant is the use of
our results to draw further connections between the existent literature on control over unreliable channel
(e.g., [8, 12, 18]) and that on control subject to SNR constraints (e.g., [3, 19, 17]).
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opt
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