
Scalable and Resilient Application Sharing System for Internet Collaboration

Scalable and Resilient Application Sharing System for Internet Collaboration

Agustín José González1 Hussein Abdel-Wahab and J. Christian Wild2
1Electronics Engineering Department Universidad Técnica Federico Santa María

Vaparaíso, Chile
2Computer Science Department Old Dominion University

Norfolk, VA, USA.
1E-mail:agv@elo.utfsm.cl

2E-mail:wahab@cs.odu.edu

Abstract

Increased desktop processing power and network
bandwidth have made feasible distributed multimedia
collaborative systems. Such systems are characterized by
video, audio and data exchanges. While there has been
much research and development of protocols and services
for video and audio transmission, less work has been
focused on data sharing particularly when the data is being
generated by an application in real time and in turns
controlled by one or more of the participants in the
collaborative session. While sharing the view of an
application can be thought of as a kind of video stream, the
unique characteristics of these dynamic images require new
algorithms and transmission protocols to achieve legibility
and size dynamic. This paper describes a protocol and its
implementation for sharing desktop applications in a
distributed collaborative session. Key objectives of this
protocol are scalability and resilience to dropped packages
and to participants joining and leaving a session. We
describe design decisions and give results demonstrating
the effect two different compression algorithms and
protocol parameters. Finally, Odust a tool sharing system
built on the implementation of shared application views is
described.

1 Introduction

The growth of the Internet and the increased

performance of desktop computers have made feasible
large-scale multimedia applications over communications
networks. This work focuses on synchronous collaborative
multimedia applications. Synchronous collaboration takes
place when the participants involved in common tasks are
seated simultaneously at their workplaces. This is the case
of virtual-classroom systems for distance learning and
multimedia conferencing systems. In this work we describe
a distributed tool for sharing applications to be used in
conjunction with video and audio in these scenarios.

Synchronous multimedia applications are based on
three basic components: audio, video, and shared data. The
transmission of audio and video information over packet

networks has been studied for years and the field is
relatively mature. However work on the transmission of
data from interactive applications to a large group is still a
relatively new area of investigation. The information
shared in a collaborative session is often one of the main
foci of the session. Rather than sending hard copies or
faxing the material to remote participants, today’s
collaboration systems use the network to distribute this
information on the fly. Many specialized systems have
been developed for that purpose, such as co-browsers [3]
[7], and sharing tool engines [1] [21]. In other cases, the
collaboration application includes a module for data
sharing such as in [16] [14] [17]. Although all these
systems provide a number of features, the major
contribution of them to a collaborative session is the ability
of distributing data information on-line by emulating a
virtual projection screen. One approach for tool sharing
enables one to share existent unmodified single-user
applications. Examples of such systems are X
Teleconferencing and Viewing (XTV) [1], Virtual Network
Computing (VNC) [21], and Java Collaborative
Environment (JCE) [2]. Another technique for tool sharing
is to control the execution of multiple synchronized
instances of the same application; an example is Habanero
[9]. Our work follows a similar approach to that taken by
VNC, which achieves tool sharing by distributing the
desktop as an active image. This means an image which
users can interact with in a similar way they do with their
local desktop. This technique allows one to share visual
component of all application on the screen. Rather than
sending the entire desktop, we propose to send the images
of the active windows of the applications running on any of
the participants' screens. Unlike the other approaches our
transmission protocol relies on IP multicasting to achieve
scalability and a video-like scheme to overcome packet
losses. In this work, we describe a protocol for sending
dynamic images and Odust, a distributed sharing tool
application based on this protocol. In Odust, users at the
receiving sites can not only view transmitted images of the
shared application, but they can also request a floor and
control the shared tool remotely. Likewise, any participant
can share any local machine-dependent application. Our

Journal of Internet Technology

goal in designing this Odust was to provide a tool for
interactive distance learning systems and large group
conferences on the Internet where it should work in
conjunction with distributed audio and video tools. In such
scenarios, we used Java and a minimum of unavoidable
architectures dependencies to achieve portability. Also, the
robustness of our distributed protocols provide graceful
degradations in face of users or communications failures.

The rest of this paper is organized as follows. The
next section describes the Dynamic Image Transmission
Protocol giving results of experiments that were conducted
in developing and tuning its implementation. Section 3
describes a tool sharing service which uses the dynamic
image transmission protocol. This is followed by a section
giving related work and conclusions.

2 Dynamic Image Transmission Protocol

The protocol for transmitting dynamic images
presented here enables data sharing by disseminating
images generated by conventional applications. From the
communication point of view, the two main features of this
protocol are resiliency and scalability. Resiliency refers to
the ability of the protocol to overcome transmission losses
and to accommodate the leaving and joining of participants.
Scalability is achieved by eliminating the need for
acknowledgements or any feedback from the receivers.
Dynamic images, like video, contain spatial and temporal
redundancy that the protocol removes. In this respect, the
set of views of a running application can be thought of as a
video stream of dynamic images and can utilize existing
video compression technology. Our protocol tiles the
image in square blocks, and then it encodes each block
using a standard image coding to remove spatial
redundancy. Only blocks that change between two image
samples are encoded, thus some temporal redundancy is
also removed. There are several advantages to dividing the
image into tiles that relate to error recovery, late joins, and
transmission efficiency. Temporal redundancy refers to
those parts of the image that remain unchanged from one
instant of time to the next. To remove this type of
redundancy motion-compensated prediction [6] has been
used in video encoding. It assumes that pixels within the
current picture can be modeled as a translation of those
within a previous picture. Motion prediction is
computationally intensive and has limited utility for the
synthetic video streams generated by computer applications
when the sample rate is low, therefore we have chosen to
only use motion prediction with null mo tion vector. Thus
blocks that remain unchanged from one sample to another
are detected and not resent. In contrast to video, these

images tend to be of higher and variable resolution than
traditional video images and present lower degrees of
motion. In addition, dynamic images often contain
information which requires high fidelity rapidly becoming
illegible as image quality is reduced. We call this property
legibility . This is especially true for images containing text.
We estimate that a sampling rate of around 2 samples per
seconds fulfills the requirements of most types of data
sharing. It also takes into consideration the computation
power utilized by multimedia applications; so that given a
bounded CPU allocation for data sharing, a bigger picture
processing can only be achieved by reducing the
processing cycle rate. Knowing the expected sampling
rates, let’s us revisit our decision about motion prediction
and better justify our argument. We believe that in low
sampling rate, i.e. around 2 Hz, motion prediction loses
effectiveness because at this frequency the motion vector is
likely to be out of the reach of the search window of
motion-compensated prediction techniques. For example,
in H.263 the search window for motion prediction is such
that motion of at most 16 pixels horizontally and/or
vertically can be predicted.

Image size changes are also transmitted by the
protocol. The size of an image might change from one
sample to another. In computer application the main cause
of images change in size is window resizing. We observe
that window resizing usually preserves the upper left
content of the view regardless the side or corner used for
resizing. Therefore, while comparing blocks between an
image and its resized version, the protocol assumes that
both samples share a common upper left region.
Consequently, receivers initialize the new version of the
image with the upper left content of the previous instance
of the image.

The use of unreliable transport protocol forces us to
take some precautions to overcome packet losses. We
decided against selective retransmission of lost data
because of its difficulties in getting feedback from an
undetermined number of receivers [19]. Instead, we send
new data or control the retransmission of the same data to
eventually repair the original lost. As introduced by the
principle of Application Level Framing (ALF) [5], we
define the protocol data unit (PDU) such a way that each
PDU can be processed out of order with respect to other
PDUs. As a result, each PDU conveys at least a tile, its
coordinates within the image, a tile-based sequence number,
and timestamp. In principle, each altered tile needs to be
sent once; however, we schedule its retransmission after
random times taken from (0, update_tile] sampling periods.
The protocol accommodates late comers by sending a
refresh for each PDU after a random time taken from the
interval (update_tile, refresh_time]. This ensures a full

Scalable and Resilient Application Sharing System for Internet Collaboration

image retransmission takes place at most every refresh_tile
sampling periods. This type of refresh also strengthens
protocol resiliency and enables the detection of removed or
closed images as we discuss below.

Image creation is simple and signaled by the reception
of the first PDU; however image removal is a little more
involved since there is no guarantee that any explicit close
image message will reach all the receivers. Close image
messages are used in conjunction with the refresh image
timeout to determine that the dynamic image was closed.

In the following sections we discuss the parameters of
the protocols and their impacts on performance. First, we
analyze the effect of two common compression standards
for still image encoding that we tested for tile compression,
and we discuss the tradeoffs in selecting the tile size. Then,
we measure the protocol processing times and used them to
estimate the sampling rate. Finally, we extend these ideas
for the transmission of multiple possible overlapped
images. To evaluate our protocol, we implemented it on
Java 2 SDKv1.2.2 and employed Java Advanced Imaging
1.0.2 for tile compression [22].

2.1 Tile Compression Format Study

We considered and compared Joint Photographic
Experts Group (JPEG) [24] and Portable Network Graphics
(PNG) [4] for tile coding. The criteria for selecting the
compress ion technique were compress ion t ime ,
comp ression ratio, and legibility. These factors were
evaluated as a function of the tile size around 32x32 pixels
(the selection of tile size is covered in the next subsection).
We compared two image types shown in Figure 1. While
Figure 1a is a real world picture, Figure 1b shows a
synthetic image containing text generated by a word
processing program. These two types of images were
picked as representative of the differences between natural
and synthetic images. As shown in Table 1, there are
significant compression ratio variations between these two
images. For the natural world image, JPEG compression

Table 1. PNG/JPEG comparison for two types of images.

Image PNG size
[Kbyte]

JPEG size
[Kbyte]

PNG/JPEG
Ratio

388x566 Real-wold 340 36 (Q=50%) 9.4

680x580 Text 21 94 (Q=75%) 0.22

outperforms PNG by a factor of almost 10. For the
synthetic image, PNG outperforms JPEG by a factor
around 4.5. Another factor in consideration is the lossy
and lossless nature of JPEG and PNG respectively. Due to
the lossy nature of JPEG, a quality factor needs to be
provided for compression. While quality values of around
50% are normally acceptable for pictures, higher values are
required for legible text images. PNG, on the other hand, is
lossless and offers good compression rates for text and line
type of images, but it does not compress well the
information of real-world scenes.

In addition to comparing these two formats for full-size
images, we also compared them for tile-size images including
two representative backgrounds typical on many synthetic
images. JPEG (at 50% quality) has an overhead of around 600
bytes while PNG overhead is near 100 bytes; however, JPEG
image size grows with a lower slope compared with PNG’s as
image size grows. By overhead we mean the size of the
compressed image as its size approaches zero.

As a result, there is lesser variation of compression
ratio with JPEG, but it imposes a higher overhead in each
tile. As for these results, it appears that tiling decreases the
performance; nonetheless, the counter argument is that
smaller tiles enable more temporal redundancy removal. In
addition, network packet fragmentation also plays a role in
determining an optimal tile size. We discuss these
tradeoffs in the following section.

2.2 Selecting Tile Size
The definition of the tile size has a crucial effect on

performance. As stressed by the principle of Application
Level Framing (ALF) [5], loss of data unit fragments
prevent data unit reconstruction and cause bandwidth
misusage due to the reception of data that cannot be
processed. We measured packet size after compression
using PNG and JPEG coding formats. For PNG encoding,
only 16x16-pixel tile size leads to a single network frame
per packet for all tiles on Ethernet, and fragmentation is
unavoidable for any other size on real-word images. For
text -like images, on the other hand, PNG does a very good
job in producing a single fragment even for 64x64-pixel
tiles. In contrast, the average and maximum packet sizes
do not vary much with the image content in JPEG. As a
result, we selected JPEG compression and 40x40-pixel tile
by being the biggest tile that does not lead to fragmentation

a) b)

Fig. 1. Test images a) 388x566-pixel real-world image and
b) 680x580-pixel Text image.

Journal of Internet Technology

on Ethernet. Fragmentation imposes a penalty not only on
bandwidth consumption but also in transmission
processing time as we elaborate in the next section.

2.3 Protocol Processing Time

We measured the processing time using our prototype
implementation. On the sending side, processing time is
divided into the following steps:

1.Time to capture the dynamic image; this is independent
of the compression algorithm.

2.Time for comparing new and old tile images for
temporal redundancy removal (also independent of
compression algorithm.

3.Time to compress all changed tiles.
4.Total transmission time.

The two images shown in Fig. 1 were used is this
comparison study. We experimented with the two
compression techniques and different tile size. The main
results are shown in Table 2. In our tests compression was
performed by the JAVA Advanced Imaging package [22]
on a Pentium II 266 MHz, 64 MB, and it was the dominant
processing time. Notice these measures represent upper
bounds for the two representative images since we assumed
a sequence of two identical images for comparison which
forces the algorithm to touch every pixel, and two distinct
images for compression which forces the protocol to
compress every tile. In practical cases, we have a fraction
of this comparison cost and a fraction of this compression
time. Thus depending on the updates from one sample to
another, the total processing time goes from 407 ms to 1.3 s
for the real-world image.

Overall, JPEG encoding ended up being faster for
computing the complete processing cycle of this
application mainly due to its library speedup over PNG.
This result shows that small updates can be sent at a rate of
2 Hz for this image size, and it takes up to around 2
seconds to send an entire new image. These lower and
upper bounds are directly proportional to the image size.

At the receiving site, processing time is divided into
1.Time to decompress the tile images
2.Time to draw the image
3.Time to display

Table 2. Sender's processing time using JPEG and 40x40 pixel tiles.

Step Real-world Image (Fig. 1 a) Text Image (Fig. 1 b)

Capture 100 ms (6%) 170 ms (6%)

Comparison 307 ms (19%) 556 ms (20%)

Compression 1132 ms (70%) 1889 ms (69%)

Transmission 78 ms (5%) 143 ms (5%)

In contrast to the sender part of the sharing tool
application that depends on native calls for image capture,
the receiver part is fully coded in Java and run on WinNT
or UNIX machines (Pentium II 266 MHz, 64 MB and Sun
Untra 10 respectively). The results for both platforms are
shown in Table 3. Like de sender's processing times, these
are upper bounds because we expect a fraction of the tiles
to remain unchanged and therefore an update will take a
fraction of these total times. The dominant cost is
decompression and the total time shows that the bottleneck
is the sender side of the protocol.

3 Protocol Extension for Transmission

of Multiple Related Windows

A scheme for sharing multiple window images of a
single application can be extended from the protocol
described in Section 0. In addition to image dimension,
now the position of each image must be sent in each tile
data unit. Also, when the shared application spawns
multiple windows, overlapped regions can be identified to
reduce traffic and coding processing.

The problem of partitioning a rectilinear polygon into
a minimum number of non-overlapping rectangles appears
in many applications besides our imaging application.
These include two-dimensional data organization [13],
optimal automated VLSI mask fabrication [20], and image
compression [18]. The problem is illustrated in Fig. . In
our application, a simple and straightforward approach
would capture and transmit each window. The result is that
the overlapped regions (in dark) would be processed and
transmitted twice.

The minimum partitioning problem was optimally
solved by Lispki in [13] and Ohtsuki in [20]. Ohtsuki’s
algorithm runs in time in the worst case. Later, in
[10] Imai and Asano proposed an algorithm that requires

time. Liou et al. proposed in [12] an optimal
-time algorithm for partitioning rectilinear

polygon without holes. Despite the optimality of the
previous algorithms, their complexity has precluded their
usage in applications that require fast encoding operations
[18].

Table 3. Receiver's processing time using JPEG and 40x40-pixel tiles.

Real-world Image (Fig. 1 a) Text Image (Fig. 1 b) Step
WinNT Solaris WinNT Solaris

Decompres
sion

677 ms
(86%)

483 ms
(67%)

795 ms
(79%)

826 ms
(64%)

Updating
Image

38 ms
(5%) 46 ms (6%) 135 ms

(13%) 85 ms (7%)

Displaying 75 ms
(9%)

191 ms (27
%)

78 ms
(8%)

364 ms
(29%)

)(2/5nO

)log(2/3 nnO

)loglog(nnO

Scalable and Resilient Application Sharing System for Internet Collaboration

We opted for a sub-optimal solution that could be easily

integrated with the tiling technique for image transmission.
Our algorithm progressively receives the rectangles to be
transmitted and returns for each tile the already sent
rectangle that fully contains it, as shown in Fig 3.

The protocol for sending dynamic images slightly
changes to integrate the algorithm for overlapping
suppression. If a tile is already at the receiving site, a copy
message is transmitted for the receiver to take the tile from
the already received image. Obviously the algorithm is not
optimal since a tile that only falls partially into an already
sent rectangle is transmitted anyway.

4 Odust

Odust (Old Dominion University Sharing Tool) is a

sharing tool engine based on dynamic image protocol for
transmitting images of application windows. We mention
only WinNT even though we also mean Win95, and Win98.
We have successfully tested receivers on WinNT and
Solaris 2.6; however, recipients could be on any machine
that runs Java and the Java Advanced Imaging package
(JAI) [22].

4.1 Description

Odust is a distributed cross-platform application that
enables data sharing in synchronous multimedia
collaboration. An owner of the shared application operates

the real instance of it on the screen, while the other
participants see and operate images, which are generated
by Odust and are in many ways indistinguishable from the
real application. Sharing is done with process granularity
meaning that all the windows belonging to a process are
shared atomically. A floor control service, described in [8],
allows any receiver to request the control of the shared
application by preempting it from the current holder.
Although one receiver can have the floor at a time, the
shared tool owner running the real version of it can also
operate it at any time. A drawback of this technique is the
interference of the floor holder input events, i.e. keyboard
and mouse events, with the same input devices at the
application owner’s machine. Due to the lightweight
nature of the protocol for sending images, any participant
can leave the collaboration session at any moment.
Likewise, anybody can join the session at any time. These
two situations have virtually no effect on the other
participants. Users joining the session late reach a
synchronic view within a bounded time, which is a
parameter in Odust. Multiple participants can
simultaneously share their applications as long as only one
tool is shared per site. Each shared tool is displayed in a
separate window at the receiving user’s desktop.

Fig. 4 shows one of the multiple scenarios where
Odust can be used. In this scenario, four participants are
sharing two computer applications. One application is an
“xterm” (marked with an “X” in Fig. 4) which is running
on user machine Eduardo. The second application is MS-
WORD (marked with a “W” in the figure) which is running
on user machine Rodrigo. Scalability is gained mainly due
to the use of IP multicasting, which is a network
requirement for Odust to work in more than 2 participant
sessions. It also works over unicast network for 2-party
sessions. The following figure illustrates the view that user
Rodrigo of the Fig. 4 sees on the screen. The other views
are similar, although each user can arrange the screen
differently if desired (as suggested in Fig. 4).

Multicast
Network

User: Eduardo
OS: WinNT

User: Rodrigo
OS: WinNT

User: Agustín
OS: Solaris

User: Cecilia
OS: Solaris

X W

W X WX

X W

Fig. 4 . Tool sharing scenario with Odust.

Fig. 2. Overlapping regions in Related Windows.

 Initial Condition on beginning transmission of a
new frame:
 φ=R ; // set to empty the set of already
sent rectangles.
 Before transmission of tile x:
 for each rectangle r in R :
 if (x is fully contained in r)
 return r;
 return null;
 After transmission of image within rectangle r:
 R = R ∪ {r};

Fig. 3. Algorithm to suppress overlapped region retransmission.

Journal of Internet Technology

Rodrigo shares an MS-Word application, as shown
in Fig.5. MS-Word runs outside Odust the same way it
does any application on his machine. In addition, he
receives the xterm being shared by Eduardo (owner label)
but controlled by Agustín (leader label). Even though the
xterm here is a UNIX application, note it runs via an X
Window-server on WinNT. Rodrigo selects what to share
from the upper menu of Odust. On this widget, he also
learns who has the floor of the tool he shares, Cecilia at
this time.

If other WinNT participants started sharing more
applications, each participant would receive them in
separate windows within Odust. This is the case of UNIX
users in this scenario. They receive Rodrigo’s MS-Word
and Eduardo’s xterm in different windows. Finally, floor
control is done on per shared tool bases. This feature
enables collaboration at a level it cannot be reached even in
face-to-face encounters when two people sit in front of the
same computer. We could have this type of view on a
single computer screen; nevertheless, we cannot use the
computer’s keyboard and mouse to simultaneously operate
both applications.

4.2 Overall Architecture
Odust’s architecture reflects the three main external
features of it, application view dissemination, floor control,
and remote tool interaction. A distributed object
architecture implements the protocol for transmission of
dynamic compound images. Another set of distributed
object implements a lightweight floor control framework
for centralized resources, which is described in [8]. Finally,
two objects work in a client-service architecture to support
the interaction with the shared application from remote
sites. Odust depends on a single multicast group that is
provided as command line argument. Now, in order to
support multiple shared applications at a time, Odust
multiplexes the multicast group in up to 256 channels. A
distributed multiple xer-demultiplexer object dynamically
manages channel allocation as new applications are shared.

Each of the basic components of Odust, compound image
transmission, floor control, and user’s input events is made
of two related objects. One centralized object resides on the
machine sharing a tool and the others are replicated at
every receiver. Fig. 6 illustrates a situation where multiple
applications are shared. Although a machine that shares a
tool can also receive others coming from other sites, we
have logically divided Odust in a sender and a receiver
component for description purpose.

Fig. 7 focuses on the internal architecture of one
sender and one receiver. All the objects of the sender are
instantiated at execution time; however, only the
demultiplexer remains up all the time at receiving sites.
The demultiplexer listens for messages coming on any
channel. Multiplexer (Mx in Fig. 7) and demultiplexer (Dx
in Fig. 7) are actually two Java interfaces implemenmted
by the same class. Thus, each multiplexer can keep track
of the channel in use and can randomly allocate a new
unused channel when the local sender requests one to start
transmitting a new shared tool to the session. As soon as
its counterparts receive an Application data Unit (ADU)
from an unallocated channel, each receiver creates new
application receiver object to process subsequent ADUs.

Senders blindly transmit ADUs with no feedback from
recipients. Both the image transmission and Token
Manager objects share the same multicast channel. While
the former transmits image protocol related messages, the
latter periodically sends a heartbeat with the floor status
(mainly floor holder), local host names, and Token
Manager service port, so that clients can dynamically
connect to the Token Manager (link b in Fig. 7). The
native library implements five functions required by the
Java Capture and Event Injection objects.

All the images of the shared application are sampled
and transmitted using the protocol for compound image
transmission described in an earlier section. At the
receiving site, the demultiplexer dispatches the ADUs to
the corresponding application receiver according to the

Fig. 5. The real MS-word application and Odust interface viewed by
Rodrigo.

App. A

App. K

Sharing Tool
Sender

Sharing Tool
Sender

K’s View
A’s View

Sharing Tool
Receiver

Sharing Tool
Receiver

Network

K’s View
A’s View

Fig. 6 . Odust distributed logic modules.

Scalable and Resilient Application Sharing System for Internet Collaboration

setting it saves when the application receiver is created
upon receiving the first ADU (method call h in Fig. 7).
Then, the application receiver dispatches the message to
either the compound image receiver (method call i) or the
Token Client (method call j).

The Token Manager and Token Client have graphics
interfaces. Upon user’s floor request, the Token Client
connects to the manager and obtains the service access
point of the Event Injector in the Grant message (b
connection in Fig. 7). The Token Client forwards this
information to the Event Capture object (method call l) and
updates its interface. Finally, connection c is established
and the mouse and keyboard events of the new floor holder
are sent to the application sender.

Connection b and c are only kept while the
corresponding receiver holds the floor. The Event Capture
object listens for input events within the application widget
at receiving sites (method call m). When an input event is
fired by the Java virtual machine, Event Capture forwards
the event to its peer Event Injector as long as the event
takes place within one of the shared application images in
the widget. This confirmation is done by a call to the
compound image receiver object (method call n). This
check suppresses events that do not fall into any image
even though they are detected within the display widget.
The compound image receiver also detects when all the
windows of the application are destroyed or no tile refresh
has taken place after a timeout. It releases all the allocated
resources by unbinding the application receiver from the
channel demultiplexer and locally removing any graphics
object of that application.

The Native Library is the only non-Java code. It
implements 5 native methods that need to be ported to
other platforms in order to share applications running on
them; however, receiver’s code has the same portability as

Java code.
Even though the traffic due to the floor holder only

affects two machines per floor in the session, we use
mouse event filtering to reduce the number of events fired
by mouse moves. Mouse movements are only sent to the
application if they are far part in position or time. Two
parameters govern the granularity of the filter.

5 Related Work

Important sharing tool applications like XTV [1], JCE
[2] and VNC [21] use TCP as transport protocol. In
contrast, our protocol works on top of unreliable multicast
transport layer. This makes a crucial difference that lets
our protocol be considerably more scalable than the other
proposals. Habanero [9] is a Java-based framework for
synchronous and asynchronous collaboration. This
framework facilitates the construction of software for
synchronous and asynchronous communication over the
Inernet. It also provides methods that developers can use to
convert existing Java applications into collaborative
applications. This system employs a centralized
architecture and utilizes TCP connections between each
client and the central server. Platform independence is
gained by using Java. Odust shares with Habanero its
object-oriented approach and programming language;
nevertheless, Odust supports a much general model for
application sharing and higher scalability level.

The idea of sharing data by sharing images has been
explored in the VNC project [21] at Cambridge University.
While Virtual Network Computing proposes image
distribution over reliable transport protocol, specifically
TCP, our protocol works over unreliable channels. We
believe our protocol can handles larger groups and
provides better responsiveness than VNC. VNC’s unit of
transmission is, like our protocol, the distribution of
rectangle of pixels at a given position. It uses raw-
encoding or copy-rectangle encoding. In the first one, the
pixel data for a rectangle is simply sent in left -to-right
scan-line order. In contrast, we use still image
compression for tiles. VNC avoids compression time but
demands more transmission bandwidth than our protocol.
Copy-rectangle encoding allows receivers to copy
rectangles of data that are already locally accessible and
can be used for motion prediction on synthetic images (e.g.
scrolling). We decided against this type of primitive
because of the high processing cost in determining tile
motion. While VNC shares an entire common desktop, we
propose an application granularity for sharing which allows
a participant to show a selected application and keep the
rest private. Odust also avoids the need for extra software

Capture and
Dynamic Compound

Image Protocol
Sender

Dynamic Compound
Image Protocol

Receiver and Display

Event
Injector Event

Capture

Token
Manager

Token
Client

Application A

WinNT

Native
Library

Application A Receiver

Sharing Tool Receiver

Application A Sender

Sharing Tool Sender

Application
B’s View

Application
A’s View

JDesktop

Java VM

Mx Dx

Temporary TCPMulticast Method Invocation

c

a

d

e

g

b

f

h

i

j

k
l

mn

Fig. 7. Odust sender/receiver overall architecture.

Journal of Internet Technology

configurations and licenses when one have to install
applications on a centralized server like in VNC. Instead,
Odust allows any user to share a local platform dependent
application.

Video Conferencing tool has also been used for data
sharing by transmitting dynamic images as video frames.
Its main advantage is the access to highly refined and tuned
libraries for video streaming that reach higher frame rate
than image processing. In fact, there is experience in its
use in the MBone [15]. Lawrence Rowe, at University of
California at Berkeley, has used video technology to
deliver data information in the Berkeley Multimedia,
Interfaces, and Graphics Seminar (MIG). There, they
either use a scan converter to translate the computer screen
signal into standard video format or employ a stand camera
to capture hard-copy slides. While a first video stream is
reserved to the presenter’s video, the second one sends the
computer screen from the converter and using H.261
format [11]. Another experience in sending data contents
through video streams is found in vic version 2.8 [23] from
University College London (UCL). One of the featured
added at UCL allows the sender to select a region of the
screen for frame capture as opposed to video frames. The
video approach fulfills reasonably well the need for data
distribution in many cases, especially under the lack of
general-purpose alternative; nonetheless, this technique
suffers from a number of shortcomings. First of all, video
compression limits the video dimensions to a few sizes.
This restricts its application when the information to be
shared does not fit a predefined video size on the screen.
On the other hand, the use of converters for sending the
entire display view forces the sender to make the complete
screen public. In addition, it inevitably reduces the
resolution to, for example, 352x288 pixels for CIF
(Common Intermediate Form) size video. Also, the
inevitable electronic thermal noise introduces fictitious
changes in the captured digital image and, therefore, leads
to more data traffic. In addition, such conversion leads to
loss of legibility which is a critical shortcoming for many
types of synthetic images. Our protocol for transmitting
dynamic images overcomes these drawbacks.

6 Conclusions and Future Work

Along with audio and video, data sharing is a crucial

component in multimedia collaboration. In order to
achieve data sharing, we developed a protocol for image
transmission and used it to implement Odust, a sharing tool
application. This resilient and scalable protocol
compresses a sequence of image samples by removing
temporal and spatial redundancy. Tiling and changes
detection achieve the former, and a standard image

compression technique accomplishes spatial redundancy
removal. Protocol data unit losses are overcome by
randomly re -transmitting tiles. This technique also
provides support for latecomers. We conducted an
extensive study on the sensitivity of the dominant
parameters of the protocol. These included tile
compression format, tile size, sampling rate, and tile
change detection technique.

This sharing tool application disseminates images of
the shared application and accepts remote user input events
as if they were coming from the local tool owner. It was
tested on Win85, Win98, WinNT, and Solaris operating
systems.

This work can be extended in two independent paths.
One aims to reduce both processing time and bandwidth
consumption of the protocol. The other approach is to
adapt current video compression techniques to fulfill the
requirements of data sharing. We are also considering
H.263+ [6] video compression standard, which supports
custom picture size. This feature removes one of the major
drawbacks we have pointed out of video encoding and
enables it for sharing images. Finally, we plan to port the
sampling library to other platforms to not only receive but
also transmit application's views from other platforms.

References

[1] H. Abdel-Wahab and M. Feit, “XTV: A Framework

for Sharing X Window Clients in Remote
Synchronous Collaboration,” in IEEE Tricomm '91:
Communication for Distributed Applications &
Systems, Chapel Hill, NC, USA, 1991. IEEE
Computer Society Press, Los Alamitos, CA, USA, pp.
157-167, 1991.

[2] H. Abdel-Wahab, O. Kim, P. Kabore, and J.P.
Favreau, “Java-based Multimedia Collaboration and
Application Sharing Environment,” in Proceedings of
the Colloque Francophone sur I’Ingenierie des
Protocoles (CFIP ’99), Nancy, France, April 26-29,
1999.

[3] C.Bisdikian, S. Brady, Y.N. Doganata, D.A. Foulger,
F. Marconcini, M. Mourad, H.L. Operowsky, G.
Pacifici, and A.N. Tantawi, “Multimedia Digital
Conferencing: A Web-enabled multimedia
Teleconferencing system,” IBM Journal of Research
and Development, vol. 42, no.2, pp. 281-298, March
1998.

[4] T. Boutell, “PNG (Portable Network Graphics)
Specification: Version 1.0,” Request for Comments
RFC 2083, January 1997.

[5] D.D., Clark and D. Tennenhouse, “Architectural
considerations for a new generation of protocols,” in

Scalable and Resilient Application Sharing System for Internet Collaboration

SIGCOMM Symposium on Communications
Architectures and Protocols, Philadelphia,
Pennsylvania, IEEE, pp. 200-208, Sept. 1990.

[6] G. Côté, B. Erol, M. Gallant, and F. Kossentini,
“H.263+: Video Coding al Low Bit Rate,” IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 8, no. 7, pp. 849-866, November
1998.

[7] J.Z. Davis, K. Maly, and M. Zubair, "A Coordinated
Browsing System”, Technical Report TR-97-29, Old
Domimion University, Norfolk, VA, May 1997.

[8] A. González, “A Semantic-based Middleware for
Multimedia Collaborative Applications,” Old
Dominion University, Norfolk, Virginia, Ph.D.
dissertation, May 2000.

[9] HABANERO, On -line from:
http://www.ncsa.uiuc.edu/SDG/Software/Habanero.

[10] H. Imai and T. Asano, “Efficient algorithm for
geometric graph search problems,” SIAM Journal on
Computing , vol. 15, pp. 478-494, 1986.

[11] ITU Telecommunication Standardization sector of
ITU, “Video codec for audiovis ual services at p x 64
kbit/s,” ITU-R Recommendation H.261, March 1993.

[12] W.T. Liou, J.J. Tan, and R.C.T. Lee, “Minimum
Rectangular Partition Problem for Simple Rectilinear
Polygons,” IEEE Transaction on Computer-Aided
Design, vol. 9 no. 7, pp. 720-733, 1990.

[13] W. Lipski, E. Lodi, F. Luccio, C. Mugnai, and L.
Pagni, “On two-dimensional data organization II,”
Fundamenta Informaticae, vol.2, no. 3, pp. 245-260,
1979.

[14] K. Maly, H. Abdel-Wahab, C.M. Overstreet, C. Wild,
A. Gupta, A. Youssef, E. Stoica, and E. Al-Shaer,
“Distant Learning and Training over Intranets,” IEEE
Internet Computing, vol. 1, no.1, pp. 60-71, 1997.

[15] MBone http://www.mbone.com/ .
[16] Microsoft's NetMeeting,

http://www.microsoft.com/netmeeting.
[17] Microsoft's PowerPoint,

http://www.microsoft.com/powerpoint.
[18] S.A. Mohamed and M.M. Fahmy, “Binary Image

Compression Using Efficient Partitioning into
Rectangular Regions,” IEEE Transactions on
Communications, vol. 43, no. 5, pp. 1888-1893, May
1995.

[19] J. Nonnenmacher and E.W. Biersack, “Scalable
Feedback for Large Groups,” IEEE/ACM
Transactions on Networking, vol. 7 no. 3, June 1999.

[20] T. Ohtsuki, “Minimum dissection of rectilinear
regions,” In Proceedings IEEE International
Symposium on Circuits and Systems, New York,
USA, vol. 3, pp. 1210-1213, 1982.

[21] T. Richardson, Q. Stafford-Fraser, K. Wood, and A.
Hopper, “Virtual Network Computing,” IEEE Internet
Computing, vol. 2, no.1, pp. 33-38, Jan/Feb 1998.

[22] Sun Microsystems, Java language,
http://java.sun.com/products.

[23] Videoconferencing Tool, The Networked Multimedia
Research Group at University College London,
http://www-mice.cs.ucl.ac.uk/multimedia/software/vic/.

[24] G.K. Wallace, “The JPEG Still Picture Compression
Standard,” Communications of the ACM , vol. 34,
no.4, pp. 30-44, April 1991.

Biography

Agustin J. González received his
bachelor degree in Electronics
Engineering from Universidad
Tecnica Federico Santa Maria
(UTFSM), Chile, in 1986. Then, he
received a MS and PhD degrees in
Computer Science from Old
Dominion University (ODU), USA, in

1997 and 2000 respectively. Dr. González is currently an
assistant professor at UTFSM.

Hussein Abdel-Wahab received the
Ph.D in 1976 and the MS in 1973 both
from the University of Waterloo in
Computer Communications and the BS
in Electrical Engineering from Cairo
University in 1969. Currently he is a
full professor of computer science at

Old Dominion University. In addition he is an adjunct
professor of computer science at the University of North
Carolina at Chapel Hill and a faculty at the Information
Technology Lab of the National Institute of Standards and
Technology. Prior to that he held faculty positions at North
Carolina State University, the University of Maryland and
Rochester Institute of Technology. He served as a
consultant to many organizations including IBM, MCNC
and MITRE Corp. He is the principle investigator in
designing and implementation of XTV, a pioneer X-
window based Teleconferencing system. His main research
interests are collaborative desktop multimedia
conferencing systems, and real-time distributed
information sharing. His research has been supported by
NSF, ONR, IBM, MCNC, MITRE, ARPA among others.
He is a senior member of IEEE Computer Society and a
member of the Association for Computing Machinery.

