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Abstract 
 

Increased desktop processing power and network 
bandwidth have made feasible distributed multimedia 
collaborative systems. Such systems are characterized by 
video, audio and data exchanges. While there has been 
much research and development of protocols and services 
for video and audio transmission, less work has been 
focused on data sharing particularly when the data is being 
generated by an application in real time and in turns 
controlled by one or more of the participants in the 
collaborative session. While sharing the view of an 
application can be thought of as a kind of video stream, the 
unique characteristics of these dynamic images require new 
algorithms and transmission protocols to achieve legibility 
and size dynamic. This paper describes a protocol and its 
implementation for sharing desktop applications in a 
distributed collaborative session. Key objectives of this 
protocol are scalability and resilience to dropped packages 
and to participants joining and leaving a session. We 
describe design decisions and give results demonstrating 
the effect two different compression algorithms and 
protocol parameters. Finally, Odust a tool sharing system 
built on the implementation of shared application views is 
described. 

 
1 Introduction 

 
The growth of the Internet and the increased 

performance of desktop computers have made feasible 
large-scale multimedia applications over communications 
networks.  This work focuses on synchronous collaborative 
multimedia applications.  Synchronous collaboration takes 
place when the participants involved in common tasks are 
seated simultaneously at their workplaces.  This is the case 
of virtual-classroom systems for distance learning and 
multimedia conferencing systems. In this work we describe 
a distributed tool for sharing applications to be used in 
conjunction with video and audio in these scenarios. 

Synchronous multimedia applications are based on 
three basic components: audio, video, and shared data.  The 
transmission of audio and video information over packet 

networks has been studied for years and the field is 
relatively mature. However work on the transmission of 
data from interactive applications to a large group is still a 
relatively new area of investigation. The information 
shared in a collaborative session is often one of the main 
foci of the session.  Rather than sending hard copies or 
faxing the material to remote participants, today’s 
collaboration systems use the network to distribute this 
information on the fly.  Many specialized systems have 
been developed for that purpose, such as co-browsers [3] 
[7], and sharing tool engines [1] [21].  In other cases, the 
collaboration application includes a module for data 
sharing such as in [16] [14] [17].  Although all these 
systems provide a number of features, the major 
contribution of them to a collaborative session is the ability 
of distributing data information on-line by emulating a 
virtual projection screen.  One approach for tool sharing 
enables one to share existent unmodified single-user 
applications.  Examples of such systems are X 
Teleconferencing and Viewing (XTV) [1], Virtual Network 
Computing (VNC) [21], and Java Collaborative 
Environment (JCE) [2]. Another technique for tool sharing 
is to control the execution of multiple synchronized 
instances of the same application; an example is Habanero 
[9].  Our work follows a similar approach to that taken by 
VNC, which achieves tool sharing by distributing the 
desktop as an active image. This means an image which 
users can interact with in a similar way they do with their 
local desktop.  This technique allows one to share visual 
component of all application on the screen.  Rather than 
sending the entire desktop, we propose to send the images 
of the active windows of the applications running on any of 
the participants' screens.  Unlike the other approaches our 
transmission protocol relies on IP multicasting to achieve 
scalability and a video-like scheme to overcome packet 
losses. In this work, we describe a protocol for sending 
dynamic images and Odust, a distributed sharing tool 
application based on this protocol.  In Odust, users at the 
receiving sites can not only view transmitted images of the 
shared application, but they can also request a floor and 
control the shared tool remotely.  Likewise, any participant 
can share any local machine-dependent application. Our 
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goal in designing this Odust was to provide a tool for 
interactive distance learning systems and large group 
conferences on the Internet where it should work in 
conjunction with distributed audio and video tools.  In such 
scenarios, we used Java and a minimum of unavoidable 
architectures dependencies to achieve portability.  Also, the 
robustness of our distributed protocols provide graceful 
degradations in face of users or communications failures. 

The rest of this paper is organized as follows. The 
next section describes the Dynamic Image Transmission 
Protocol giving results of experiments that were conducted 
in developing and tuning its implementation.  Section 3 
describes a tool sharing service which uses the dynamic 
image transmission protocol. This is followed by a section 
giving related work and conclusions. 

 
2 Dynamic Image Transmission Protocol 

 

The protocol for transmitting dynamic images 
presented here enables data sharing by disseminating 
images generated by conventional applications.  From the 
communication point of view, the two main features of this 
protocol are resiliency and scalability. Resiliency refers to 
the ability of the protocol to overcome transmission losses 
and to accommodate the leaving and joining of participants. 
Scalability is achieved by eliminating the need for 
acknowledgements or any feedback from the receivers.  
Dynamic images, like video, contain spatial and temporal 
redundancy that the protocol removes. In this respect, the 
set of views of a running application can be thought of as a 
video stream of dynamic images and can utilize existing 
video compression technology.  Our protocol tiles the 
image in square blocks, and then it encodes each block 
using a standard image coding to remove spatial 
redundancy.  Only blocks that change between two image 
samples are encoded, thus some temporal redundancy is 
also removed. There are several advantages to dividing the 
image into tiles that relate to error recovery, late joins, and 
transmission efficiency.  Temporal redundancy refers to 
those parts of the image that remain unchanged from one 
instant of time to the next. To remove this type of 
redundancy motion-compensated prediction [6] has been 
used in video encoding.  It assumes that pixels within the 
current picture can be modeled as a translation of those 
within a previous picture. Motion prediction is 
computationally intensive and has limited utility for the 
synthetic video streams generated by computer applications 
when the sample rate is low, therefore we have chosen to 
only use motion prediction with null mo tion vector. Thus 
blocks that remain unchanged from one sample to another 
are detected and not resent.  In contrast to video, these 

images tend to be of higher and variable resolution than 
traditional video images and present lower degrees of 
motion. In addition, dynamic images often contain 
information which requires high fidelity rapidly becoming 
illegible as image quality is reduced.  We call this property 
legibility .  This is especially true for images containing text.  
We estimate that a sampling rate of around 2 samples per 
seconds fulfills the requirements of most types of data 
sharing.  It also takes into consideration the computation 
power utilized by multimedia applications; so that given a 
bounded CPU allocation for data sharing, a bigger picture 
processing can only be achieved by reducing the 
processing cycle rate. Knowing the expected sampling 
rates, let’s us revisit our decision about motion prediction 
and better justify our argument.  We believe that in low 
sampling rate, i.e. around 2 Hz, motion prediction loses 
effectiveness because at this frequency the motion vector is 
likely to be out of the reach of the search window of 
motion-compensated prediction techniques.  For example, 
in H.263 the search window for motion prediction is such 
that motion of at most 16 pixels horizontally and/or 
vertically can be predicted. 

Image size changes are also transmitted by the 
protocol.  The size of an image might change from one 
sample to another.  In computer application the main cause 
of images change in size is window resizing.  We observe 
that window resizing usually preserves the upper left 
content of the view regardless the side or corner used for 
resizing.  Therefore, while comparing blocks between an 
image and its resized version, the protocol assumes that 
both samples share a common upper left region.  
Consequently, receivers initialize the new version of the 
image with the upper left content of the previous instance 
of the image. 

The use of unreliable transport protocol forces us to 
take some precautions to overcome packet losses.  We 
decided against selective retransmission of lost data 
because of its difficulties in getting feedback from an 
undetermined number of receivers [19].  Instead, we send 
new data or control the retransmission of the same data to 
eventually repair the original lost.  As introduced by the 
principle of Application Level Framing (ALF) [5], we 
define the protocol data unit (PDU) such a way that each 
PDU can be processed out of order with respect to other 
PDUs. As a result, each PDU conveys at least a tile, its 
coordinates within the image, a tile-based sequence number, 
and timestamp.  In principle, each altered tile needs to be 
sent once; however, we schedule its retransmission after 
random times taken from (0, update_tile] sampling periods.  
The protocol accommodates late comers by sending a 
refresh for each PDU after a random time taken from the 
interval (update_tile, refresh_time].  This ensures a full 
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image retransmission takes place at most every refresh_tile 
sampling periods.  This type of refresh also strengthens 
protocol resiliency and enables the detection of removed or 
closed images as we discuss below. 

Image creation is simple and signaled by the reception 
of the first PDU; however image removal is a little more 
involved since there is no guarantee that any explicit close 
image message will reach all the receivers.  Close image 
messages are used in conjunction with the refresh image 
timeout to determine that the dynamic image was closed. 

In the following sections we discuss the parameters of 
the protocols and their impacts on performance.  First, we 
analyze the effect of two common compression standards 
for still image encoding that we tested for tile compression, 
and we discuss the tradeoffs in selecting the tile size. Then, 
we measure the protocol processing times and used them to 
estimate the sampling rate. Finally, we extend these ideas 
for the transmission of multiple possible overlapped 
images. To evaluate our protocol, we implemented it on 
Java 2 SDKv1.2.2 and employed Java Advanced Imaging 
1.0.2 for tile compression [22]. 

 
2.1 Tile Compression Format Study 

We considered and compared Joint Photographic 
Experts Group (JPEG) [24] and Portable Network Graphics 
(PNG) [4] for tile coding.  The criteria for selecting the 
compress ion  technique  were  compress ion  t ime ,  
comp ression ratio, and legibility. These factors were 
evaluated as a function of the tile size around 32x32 pixels 
(the selection of tile size is covered in the next subsection). 
We compared two image types shown in Figure 1. While 
Figure 1a is a real world picture, Figure 1b  shows a 
synthetic image containing text generated by a word 
processing program. These two types of images were 
picked as representative of the differences between natural 
and synthetic images. As shown in Table 1, there are 
significant compression ratio variations between these two 
images.  For the natural world image, JPEG compression 

Table 1. PNG/JPEG comparison for two types of images. 

Image PNG size 
[Kbyte] 

JPEG size 
[Kbyte] 

PNG/JPEG 
Ratio  

388x566 Real-wold 340 36  (Q=50%) 9.4 

680x580 Text 21 94  (Q=75%) 0.22 

 
outperforms PNG by a factor of almost 10. For the 
synthetic image, PNG outperforms JPEG by a factor 
around 4.5.  Another factor in consideration is the lossy 
and lossless nature of JPEG and PNG respectively.  Due to 
the lossy nature of JPEG, a quality factor needs to be 
provided for compression.  While quality values of around 
50% are normally acceptable for pictures, higher values are 
required for legible text images.  PNG, on the other hand, is 
lossless and offers good compression rates for text and line 
type of images, but it does not compress well the 
information of real-world scenes. 

In addition to comparing these two formats for full-size 
images, we also compared them for tile-size images including 
two representative backgrounds typical on many synthetic 
images. JPEG (at 50% quality) has an overhead of around 600 
bytes while PNG overhead is near 100 bytes; however, JPEG 
image size grows with a lower slope compared with PNG’s as 
image size grows. By overhead we mean the size of the 
compressed image as its size approaches zero. 

As a result, there is lesser variation of compression 
ratio with JPEG, but it imposes a higher overhead in each 
tile.  As for these results, it appears that tiling decreases the 
performance; nonetheless, the counter argument is that 
smaller tiles enable more temporal redundancy removal.  In 
addition, network packet fragmentation also plays a role in 
determining an optimal tile size.  We discuss these 
tradeoffs in the following section. 

 

2.2 Selecting Tile Size 
The definition of the tile size has a crucial effect on 

performance.  As stressed by the principle of Application 
Level Framing (ALF) [5], loss of data unit fragments 
prevent data unit reconstruction and cause bandwidth 
misusage due to the reception of data that cannot be 
processed.  We measured packet size after compression 
using PNG and JPEG coding formats.  For PNG encoding, 
only 16x16-pixel tile size leads to a single network frame 
per packet for all tiles on Ethernet, and fragmentation is 
unavoidable for any other size on real-word images.  For 
text -like images, on the other hand, PNG does a very good 
job in producing a single fragment even for 64x64-pixel 
tiles.  In contrast, the average and maximum packet sizes 
do not vary much with the image content in JPEG.  As a 
result, we selected JPEG compression and 40x40-pixel tile 
by being the biggest tile that does not lead to fragmentation 

 
a)  b) 

Fig. 1. Test images a) 388x566-pixel real-world image and  
b) 680x580-pixel Text image. 
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on Ethernet.  Fragmentation imposes a penalty not only on 
bandwidth consumption but also in transmission 
processing time as we elaborate in the next section. 

 
2.3 Protocol Processing Time 

We measured the processing time using our prototype 
implementation. On the sending side, processing time is 
divided into the following steps: 

1.Time to capture the dynamic image; this is independent 
of the compression algorithm. 

2.Time for comparing new and old tile images for 
temporal redundancy removal (also independent of 
compression algorithm. 

3.Time to compress all changed tiles. 
4.Total transmission time. 

The two images shown in Fig. 1 were used is this 
comparison study.  We experimented with the two 
compression techniques and different tile size.  The main 
results are shown in Table 2. In our tests compression was 
performed by the JAVA Advanced Imaging package [22] 
on a Pentium II 266 MHz, 64 MB, and it was the dominant 
processing time. Notice these measures represent upper 
bounds for the two representative images since we assumed 
a sequence of two identical images for comparison which 
forces the algorithm to touch every pixel, and two distinct 
images for compression which forces the protocol to 
compress every tile.  In practical cases, we have a fraction 
of this comparison cost and a fraction of this compression 
time.  Thus depending on the updates from one sample to 
another, the total processing time goes from 407 ms to 1.3 s 
for the real-world image. 

Overall, JPEG encoding ended up being faster for 
computing the complete processing cycle of this 
application mainly due to its library speedup over PNG. 
This result shows that small updates can be sent at a rate of 
2 Hz for this image size, and it takes up to around 2 
seconds to send an entire new image. These lower and 
upper bounds are directly proportional to the image size. 

At the receiving site, processing time is divided into 
1.Time to decompress the tile images 
2.Time to draw the image 
3.Time to display 

Table 2. Sender's processing time using JPEG and 40x40 pixel tiles. 

Step Real-world Image (Fig. 1 a) Text Image (Fig. 1 b) 

Capture 100 ms ( 6% )  170 ms ( 6% )  

Comparison 307 ms ( 19% ) 556 ms ( 20% ) 

Compression 1132 ms ( 70% ) 1889 ms ( 69% ) 

Transmission 78 ms ( 5% ) 143 ms ( 5% )  

 

In contrast to the sender part of the sharing tool 
application that depends on native calls for image capture, 
the receiver part is fully coded in Java and run on WinNT 
or UNIX machines (Pentium II 266 MHz, 64 MB and Sun 
Untra 10  respectively).  The results for both platforms are 
shown in Table 3.  Like de sender's processing times, these 
are upper bounds because we expect a fraction of the tiles 
to remain unchanged and therefore an update will take a 
fraction of these total times.  The dominant cost is 
decompression and the total time shows that the bottleneck 
is the sender side of the protocol. 

 
3 Protocol Extension for Transmission 

of Multiple Related Windows 
 

A scheme for sharing multiple window images of a 
single application can be extended from the protocol 
described in Section 0.  In addition to image dimension, 
now the position of each image must be sent in each tile 
data unit. Also, when the shared application spawns 
multiple windows, overlapped regions can be identified to 
reduce traffic and coding processing. 

The problem of partitioning a rectilinear polygon into 
a minimum number of non-overlapping rectangles appears 
in many applications besides our imaging application. 
These include two-dimensional data organization [13], 
optimal automated VLSI mask fabrication [20], and image 
compression [18].  The problem is illustrated in Fig. .  In 
our application, a simple and straightforward approach 
would capture and transmit each window.  The result is that 
the overlapped regions (in dark) would be processed and 
transmitted twice. 

The minimum partitioning problem was optimally 
solved by Lispki in [13] and Ohtsuki in [20].  Ohtsuki’s 
algorithm runs in              time in the worst case. Later, in 
[10] Imai and Asano proposed an algorithm that requires 

time. Liou et al. proposed in [12] an optimal   
-time algorithm for partitioning rectilinear 

polygon without holes.  Despite the optimality of the 
previous algorithms, their complexity has precluded their 
usage in applications that require fast encoding operations 
[18]. 

Table 3. Receiver's processing time using JPEG and 40x40-pixel tiles. 

Real-world Image (Fig. 1 a) Text Image (Fig. 1 b) Step 
WinNT  Solaris WinNT  Solaris 

Decompres
sion 

677 ms 
( 86%) 

483 ms 
( 67%) 

795 ms 
( 79%) 

826 ms 
( 64%) 

Updating 
Image 

38 ms 
( 5% ) 46 ms ( 6%) 135 ms 

(13% ) 85 ms ( 7%) 

Displaying 75 ms 
( 9% ) 

191 ms (27 
%) 

78 ms 
( 8%) 

364 ms 
(29%) 

 

)( 2/5nO

)log( 2/3 nnO

)loglog( nnO



Scalable and Resilient Application Sharing System for Internet Collaboration 

 
We opted for a sub-optimal solution that could be easily 

integrated with the tiling technique for image transmission.  
Our algorithm progressively receives the rectangles to be 
transmitted and returns for each tile the already sent 
rectangle that fully contains it, as shown in Fig 3. 

The protocol for sending dynamic images slightly 
changes to integrate the algorithm for overlapping 
suppression. If a tile is already at the receiving site, a copy 
message is transmitted for the receiver to take the tile from 
the already received image.  Obviously the algorithm is not 
optimal since a tile that only falls partially into an already 
sent rectangle is transmitted anyway. 

 
4 Odust 

 
Odust (Old Dominion University Sharing Tool) is a 

sharing tool engine based on dynamic image protocol for 
transmitting images of application windows. We mention 
only WinNT even though we also mean Win95, and Win98.  
We have successfully tested receivers on WinNT and 
Solaris 2.6; however, recipients could be on any machine 
that runs Java and the Java Advanced Imaging package 
(JAI) [22]. 

 
4.1 Description 

Odust is a distributed cross-platform application that 
enables data sharing in synchronous multimedia 
collaboration. An owner of the shared application operates 

the real instance of it on the screen, while the other 
participants see and operate images, which are generated 
by Odust and are in many ways indistinguishable from the 
real application.  Sharing is done with process granularity 
meaning that all the windows belonging to a process are 
shared atomically.  A floor control service, described in [8], 
allows any receiver to request the control of the shared 
application by preempting it from the current holder.  
Although one receiver can have the floor at a time, the 
shared tool owner running the real version of it can also 
operate it at any time.  A drawback of this technique is the 
interference of the floor holder input events, i.e. keyboard 
and mouse events, with the same input devices at the 
application owner’s machine.  Due to the lightweight 
nature of the protocol for sending images, any participant 
can leave the collaboration session at any moment. 
Likewise, anybody can join the session at any time.  These 
two situations have virtually no effect on the other 
participants.  Users joining the session late reach a 
synchronic view within a bounded time, which is a 
parameter in Odust.  Multiple participants can 
simultaneously share their applications as long as only one 
tool is shared per site.  Each shared tool is displayed in a 
separate window at the receiving user’s desktop. 

Fig. 4 shows one of the multiple scenarios where 
Odust can be used. In this scenario, four participants are 
sharing two computer applications. One application is an 
“xterm” (marked with an “X” in Fig. 4) which is running 
on user machine Eduardo. The second application is  MS-
WORD (marked with a “W” in the figure) which is running 
on user machine Rodrigo. Scalability is gained mainly due 
to the use of IP multicasting, which is a network 
requirement for Odust to work in more than 2 participant 
sessions.  It also works over unicast network for 2-party 
sessions.  The following figure illustrates the view that user 
Rodrigo of the Fig. 4 sees on the screen. The other views 
are similar, although each user can arrange the screen 
differently if desired (as suggested in Fig. 4). 

 

Multicast 
Network 

User: Eduardo 
OS: WinNT 

User: Rodrigo 
OS: WinNT 

User: Agustín  
OS: Solaris 

User: Cecilia 
OS: Solaris 

X W 

W X WX 

X W 

 
Fig. 4 . Tool sharing scenario with Odust. 

 
Fig. 2. Overlapping regions in Related Windows. 

 Initial Condition on beginning transmission of a 
new frame: 
   φ=R ;    // set to empty the set of already 
sent rectangles. 
 Before transmission of tile x: 
  for each rectangle r in R :  
   if ( x is fully contained in r )  
    return r; 
  return null; 
 After transmission of image within rectangle r: 
  R = R ∪ {r}; 

Fig. 3. Algorithm to suppress overlapped region retransmission. 
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Rodrigo shares an MS-Word application, as shown 
in Fig.5. MS-Word runs outside Odust the same way it 
does any application on his machine.  In addition, he 
receives the xterm being shared by Eduardo (owner label) 
but controlled by Agustín (leader label).  Even though the 
xterm here is a UNIX application, note it runs via an X 
Window-server on WinNT.  Rodrigo selects what to share 
from the upper menu of Odust.  On this widget, he also 
learns who has the floor of the tool he shares, Cecilia at 
this time. 

If other WinNT participants started sharing more 
applications, each participant would receive them in 
separate windows within Odust.  This is the case of UNIX 
users in this scenario.  They receive Rodrigo’s MS-Word 
and Eduardo’s xterm in different windows.  Finally, floor 
control is done on per shared tool bases.  This feature 
enables collaboration at a level it cannot be reached even in 
face-to-face encounters when two people sit in front of the 
same computer.  We could have this type of view on a 
single computer screen; nevertheless, we cannot use the 
computer’s keyboard and mouse to simultaneously operate 
both applications. 

 
4.2 Overall Architecture 
Odust’s architecture reflects the three main external 
features of it, application view dissemination, floor control, 
and remote tool interaction.  A distributed object 
architecture implements the protocol for transmission of 
dynamic compound images. Another set of distributed 
object implements a lightweight floor control framework 
for centralized resources, which is described in [8]. Finally, 
two objects work in a client-service architecture to support 
the interaction with the shared application from remote 
sites.  Odust depends on a single multicast group that is 
provided as command line argument.  Now, in order to 
support multiple shared applications at a time, Odust 
multiplexes the multicast group in up to 256 channels.  A 
distributed multiple xer-demultiplexer object dynamically 
manages channel allocation as new applications are shared.  

Each of the basic components of Odust, compound image 
transmission, floor control, and user’s input events is made 
of two related objects. One centralized object resides on the 
machine sharing a tool and the others are replicated at 
every receiver. Fig. 6 illustrates a situation where multiple 
applications are shared.  Although a machine that shares a 
tool can also receive others coming from other sites, we 
have logically divided Odust in a sender and a receiver 
component for description purpose. 

Fig. 7 focuses on the internal architecture of one 
sender and one receiver.  All the objects of the sender are 
instantiated at execution time; however, only the 
demultiplexer remains up all the time at receiving sites.  
The demultiplexer listens for messages coming on any 
channel.  Multiplexer (Mx in Fig. 7) and demultiplexer (Dx 
in Fig. 7) are actually two Java interfaces implemenmted 
by the same class.  Thus, each multiplexer can keep track 
of the channel in use and can randomly allocate a new 
unused channel when the local sender requests one to start 
transmitting a new shared tool to the session.  As soon as 
its counterparts receive an Application data Unit (ADU) 
from an unallocated channel, each receiver creates new 
application receiver object to process subsequent ADUs. 

Senders blindly transmit ADUs with no feedback from 
recipients.  Both the image transmission and Token 
Manager objects share the same multicast channel.  While 
the former transmits image protocol related messages, the 
latter periodically sends a heartbeat with the floor status 
(mainly floor holder), local host names, and Token 
Manager service port, so that clients can dynamically 
connect to the Token Manager  (link b in Fig. 7).  The 
native library implements five functions required by the 
Java Capture and Event Injection objects. 

All the images of the shared application are sampled 
and transmitted using the protocol for compound image 
transmission described in an earlier section.  At the 
receiving site, the demultiplexer dispatches the ADUs to 
the corresponding application receiver according to the 

  

Fig. 5. The real MS-word application and Odust interface viewed by 
Rodrigo. 

App. A

App. K

Sharing Tool
Sender

Sharing Tool
Sender

K’s View
A’s View

Sharing Tool
Receiver

Sharing Tool
Receiver

Network

K’s View
A’s View

 
 

Fig. 6 . Odust distributed logic modules. 
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setting it saves when the application receiver is created 
upon receiving the first ADU (method call h in Fig. 7). 
Then, the application receiver dispatches the message to 
either the compound image receiver (method call i) or the 
Token Client (method call j). 

The Token Manager and Token Client have graphics 
interfaces. Upon user’s floor request, the Token Client 
connects to the manager and obtains the service access 
point of the Event Injector in the Grant message (b 
connection in Fig. 7). The Token Client forwards this 
information to the Event Capture object (method call l) and 
updates its interface.  Finally, connection c is established 
and the mouse and keyboard events of the new floor holder 
are sent to the application sender.  

Connection b and c are only kept while the 
corresponding receiver holds the floor.  The Event Capture 
object listens for input events within the application widget 
at receiving sites (method call m).  When an input event is 
fired by the Java virtual machine, Event Capture forwards 
the event to its peer Event Injector as long as the event 
takes place within one of the shared application images in 
the widget.  This confirmation is done by a call to the 
compound image receiver object (method call n ).  This 
check suppresses events that do not fall into any image 
even though they are detected within the display widget.  
The compound image receiver also detects when all the 
windows of the application are destroyed or no tile refresh 
has taken place after a timeout.  It releases all the allocated 
resources by unbinding the application receiver from the 
channel demultiplexer and locally removing any graphics 
object of that application. 

The Native Library is the only non-Java code.  It 
implements 5 native methods that need to be ported to 
other platforms in order to share applications running on 
them; however, receiver’s code has the same portability as 

Java code. 
Even though the traffic due to the floor holder only 

affects two machines per floor in the session, we use 
mouse event filtering to reduce the number of events fired 
by mouse moves.  Mouse movements are only sent to the 
application if they are far part in position or time. Two 
parameters govern the granularity of the filter.  

 
5 Related Work 

 

Important sharing tool applications like XTV [1], JCE 
[2] and VNC [21] use TCP as transport protocol.  In 
contrast, our protocol works on top of unreliable multicast 
transport layer.  This makes a crucial difference that lets 
our protocol be considerably more scalable than the other 
proposals.  Habanero [9] is a Java-based framework for 
synchronous and asynchronous collaboration. This 
framework facilitates the construction of software for 
synchronous and asynchronous communication over the 
Inernet. It also provides methods that developers can use to 
convert existing Java applications into collaborative 
applications.  This system employs a centralized 
architecture and utilizes TCP connections between each 
client and the central server.  Platform independence is 
gained by using Java.  Odust shares with Habanero its 
object-oriented approach and programming language; 
nevertheless, Odust supports a much general model for 
application sharing and higher scalability level. 

The idea of sharing data by sharing images has been 
explored in the VNC project [21] at Cambridge University.  
While Virtual Network Computing proposes image 
distribution over reliable transport protocol, specifically 
TCP, our protocol works over unreliable channels.  We 
believe our protocol can handles larger groups and 
provides better responsiveness than VNC.  VNC’s unit of 
transmission is, like our protocol, the distribution of 
rectangle of pixels at a given position.  It uses raw-
encoding or copy-rectangle encoding. In the first one, the 
pixel data for a rectangle is simply sent in left -to-right 
scan-line order.  In contrast, we use still image 
compression for tiles.  VNC avoids compression time but 
demands more transmission bandwidth than our protocol.  
Copy-rectangle encoding allows receivers to copy 
rectangles of data that are already locally accessible and 
can be used for motion prediction on synthetic images (e.g. 
scrolling).  We decided against this type of primitive 
because of the high processing cost in determining tile 
motion.  While VNC shares an entire common desktop, we 
propose an application granularity for sharing which allows 
a participant to show a selected application and keep the 
rest private. Odust also avoids the need for extra software 
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Fig. 7. Odust sender/receiver overall architecture. 
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configurations and licenses when one have to install 
applications on a centralized server like in VNC. Instead, 
Odust allows any user to share a local platform dependent 
application. 

Video Conferencing tool has also been used for data 
sharing by transmitting dynamic images as video frames.  
Its main advantage is the access to highly refined and tuned 
libraries for video streaming that reach higher frame rate 
than image processing.  In fact, there is experience in its 
use in the MBone [15]. Lawrence Rowe, at University of 
California at Berkeley, has used video technology to 
deliver data information in the Berkeley Multimedia, 
Interfaces, and Graphics Seminar (MIG).  There, they 
either use a scan converter to translate the computer screen 
signal into standard video format or employ a stand camera 
to capture hard-copy slides.  While a first video stream is 
reserved to the presenter’s video, the second one sends the 
computer screen from the converter and using H.261 
format [11].  Another experience in sending data contents 
through video streams is found in vic version 2.8 [23] from 
University College London (UCL).  One of the featured 
added at UCL allows the sender to select a region of the 
screen for frame capture as opposed to video frames.  The 
video approach fulfills reasonably well the need for data 
distribution in many cases, especially under the lack of 
general-purpose alternative; nonetheless, this technique 
suffers from a number of shortcomings.  First of all, video 
compression limits the video dimensions to a few sizes.  
This restricts its application when the information to be 
shared does not fit a predefined video size on the screen.  
On the other hand, the use of converters for sending the 
entire display view forces the sender to make the complete 
screen public. In addition, it inevitably reduces the 
resolution to, for example, 352x288 pixels for CIF 
(Common Intermediate Form) size video.  Also, the 
inevitable electronic thermal noise introduces fictitious 
changes in the captured digital image and, therefore, leads 
to more data traffic.  In addition, such conversion leads to 
loss of legibility which is a critical shortcoming for many 
types of synthetic images.  Our protocol for transmitting 
dynamic images overcomes these drawbacks. 

 
6 Conclusions and Future Work 

 
Along with audio and video, data sharing is a crucial 

component in multimedia collaboration.  In order to 
achieve data sharing, we developed a protocol for image 
transmission and used it to implement Odust, a sharing tool 
application.  This resilient and scalable protocol 
compresses a sequence of image samples by removing 
temporal and spatial redundancy.  Tiling and changes 
detection achieve the former, and a standard image 

compression technique accomplishes spatial redundancy 
removal.  Protocol data unit losses are overcome by 
randomly re -transmitting tiles.  This technique also 
provides support for latecomers.  We conducted an 
extensive study on the sensitivity of the dominant 
parameters of the protocol. These included tile 
compression format, tile size, sampling rate, and tile 
change detection technique. 

This sharing tool application disseminates images of 
the shared application and accepts remote user input events 
as if they were coming from the local tool owner.  It was 
tested on Win85, Win98, WinNT, and Solaris operating 
systems. 

This work can be extended in two independent paths. 
One aims to reduce both processing time and bandwidth 
consumption of the protocol.  The other approach is to 
adapt current video compression techniques to fulfill the 
requirements of data sharing.  We are also considering 
H.263+ [6] video compression standard, which supports 
custom picture size.  This feature removes one of the major 
drawbacks we have pointed out of video encoding and 
enables it for sharing images. Finally, we plan to port the 
sampling library to other platforms to not only receive but 
also transmit application's views from other platforms. 
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