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A problem inspired by Image Registration

How similar/different are 2 images/shapes?
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A problem inspired by Image Registration

How similar/different are 2 images/shapes?

HYPOTHALAMUS

Healthy Schizophrenia

Assuming a correlation between healthy state or diseased, and the shape of
the anatomical structure, Can we define a distance between these shapes?



A problem inspired by Image Registration:

Image Registration (Alignment): Estimation of optimal
transformation between: Images, Points (Landmarks), Curves, Edges,
Scalar functions, etc.

Cross-correlation,

Mutual Information,

Sum of Squared Intensity Differences,
Ratio image uniformity.

o Intensity

Linear: Rigid, Affine, Piecewise Affine.

@ Models { Non-Rigid: Radial basis (thin plate, surface splines),
Viscous fluids, Elastic, Large deformations.



Outline

Building Geodesics Between Shapes



Building Geodesics: Background

D’Arcy Thompson: “On Growth and Form” (1917)

“To what extent is it true that individuals of closely related species can be
transformed, one into the other, by a conformal transformation which

carries every significant feature of one into the corresponding feature of the
other?”




Building Geodesics: Background
e D’Arcy Thompson: “On Growth and Form” (1917).

o Ulf Grenander Mathematical rigor: Use of Lie group action.

o A. Trouve, An infinite dimensional group approach for physics based
models in patterns recognition, International Journal of Computer
Vision, 1995. (D. Ebin and J. Marsden, Groups of diffeomorphisms and
the motion of an incompressible fluid, Ann. of Math, 1970.)

@ Diffeomorphic matching framework, M. Miller, A. Trouve, L. Younes,
On the metrics and Euler Lagrange equations of computational
anatomy. Annual Review of Biomedical Engineering, 2002.

@ M. Bruveris, F. Gay-Balmaz, D.D. Holm, T.S. Ratiu, The momentum
map representation of images, Journal of Nonlinear Science, 2011.
(Geometric Mechanics)



___Motivation _Geodesics _Num. Model _Heart Motion _Electrophysiology
Building Geodesics: Generalized Euler Equations (v. Arnold)
o Lie group G with Lie algebra g, acting on a general manifold M.
o (Right-Left) Invariant Lagrangian on TG: L : TG — R.

@ Euler-Poincaré reduction theorem, construct a reduced Lagrangian
l:ueg—R

E—L equations E—P equations

b b
6/ L(p, ) dt =0 <:>5/ l(u)dt=0

Ham.'s Principle Red. Ham.'s Principle
'm‘ Legendre T'r.
E-P ] J L-P
Red./Reconst. Red./Reconst.
'm‘ Reduced Legendre Tr. L—Pong"

@ The kinetic £ defines a metric on G, so E — P represents a geodesic
motion on G.



Generalized Euler Equations: SO(3)

Rotation of rigid bodies in R® — Geodesic motion in SO(3) Lie

group:
L — P equation:

SO(3) : dil

dt

—adyIl =0

where adoll =11 x Q




Generalized Euler Equations: Diff ,(£2)
o Ideal fluid confined on  C R?, configuration space Diff . (€).
o Position of every particle X € Q: ¢(t, X), ¢ € Diff ,(Q2).
o Right-Invariant Lagrangian on T Diff ,(Q): £ : TDiff ,(Q) — R.

o With this setup, Ebin and Marsden proved well-possessedness for
incompressible Euler’s equations, starting the field of geometric
hydrodynamics.
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Generalized Euler Equations: Diff (2) : EP Diff equation

dm~+u-Vm+ (Vu)' -m+m (divu) =0
or

om +adim =0

m: Momentum corresponding to the vector field u,
ad*: Coadjoint action of the Lie algebra g of Diff (2) on g*.

@ When Q = S, KdV equation: Geodesic flow with respect to the right
invariant L? metric on the Bott-Virasoro group.

e When Q = S*, Camassa-Holm (C-H) equation: Geodesic flow with
respect to the right invariant H' metric on the Bott-Virasoro group.
(Existence of geodesics has been proven for this PDE).

o In 1-D, EPDiff is:
me+umg +2mu, =0 with  m = (1 —a’d2)u, (1)

i.e., the dispersionless limit of the C-H equation for shallow water
motion, with train of peakons solution.
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Generalized Euler Equations: Diff (2) : EP Diff equation
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Generalized Euler Equations: Diff (2) : EP Diff equation
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Num. Model
Outline

Numerical Model
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Num. Model

Diffeomorphic Registration: Numerical Model Target

Template

om +adim =0 | |2 {7} = 5o {505

EPDiff (Geodesics on Diff) <  Hamiltonian System
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Diffeomorphic Registration: Numerical Model

Energy on the initial momentum: E(po) = (po| Kpo) + AU (¢(1))
Variation on the initial momentum: pg — po + dpo

5E(po) = 2 (5p0| K po) + A (%w»\ cw)) 1)

1) From EPDiff ... Linearized model:

o {3} = . {5“”} 50(0) = 0,5(0) = 590

2) Adjoint system: &, 1= 0p", &, =

ofer--mfel] ew-Reoen-

3) So (1) becomes

6E(po) = (dpol 2K po + AE,.(0))

= |VE(po) = 2po + AK ~1€,(0) = po"t! = po" — e VE(p})
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Num. Model

Diffeomorphic Registration: Numerical Model

Template Target

Felipe Arrate. “FEwvolution Equations On The Group Of Diffeomorphisms,
With Applications In Computational Anatomy’. 15



Num. Model

Examples: Medical Images Registration

L. Younes, Felipe Arrate, M.I. Miller: “Fuvolution equations in

computational anatomy”. Neurolmage 45 (2009).
16



Num. Model

Examples: Miocardial Fibers

Vadakkumpadan, Felipe Arrate, T. Ratnanather, R. Winslow, May 2011.
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Learning Heart Motion
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Heart Motion

Problem: Cardiovascular diseases

o Heart diseases are today responsible for
the 28% of deaths in western countries
(Cancer is 30%), around 400, 000 deaths
per year in Europe

o fatigue
o insufficient ventricular contraction

o Sudden Death affects 1 in 10,000 per
year in developed countries

o electrical disorder
o ventricular fibrillation

- Diagnosis.

- Efficacy of defibrillation in infarcted

Classification of pathologic hearts by
individualized model of cardiac
motion and electrophysiology.

hearts.

- Ablation location for correcting

arrhythmias.
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Heart Motion

Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

o Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

o Importance of trabecular fibers.
o Electrophysiology.

@ Detailed description of boundary conditions.

20



Heart Motion

Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

o Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

o Importance of trabecular fibers.
o Electrophysiology.

@ Detailed description of boundary conditions.

2) “Brainstorming”

o Is Aortic pressure enough? Can we accurately (to a good level) get
those measurements?

o Attempts using electrocardiogram measurements have their own line of
research, but rough approximations.

@ Mechanics?. Difficult measurements. Proposed models have more or
less detail on the tensor structure of the fibers, stress tensor, ...

@ Motion Learning? — Images (cine CT, MRI).

http://www.youtube.com/watch?v=1ZZvPgquif4
http://www.youtube.com/watch?v=rhallml-juk



http://www.youtube.com/watch?v=lZZvPgquif4
http://www.youtube.com/watch?v=rhallml-juk

Heart Motion

Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

o Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

o Importance of trabecular fibers.
o Electrophysiology.

@ Detailed description of boundary conditions.

3) Motion Learning
o What can we infer from a study mainly based on medical images?

o Is it possible to infer good/bad behaviour just from deformation?.

@ Do we need to develop new Mathematics?.




Heart Motion

Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

@ Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

o Importance of trabecular fibers.
o Electrophysiology.

@ Detailed description of boundary conditions.

3) Motion Learning

e What do we follow, Tip of the heart? “Patterns of spiral tip motion in
cardiac tissues”, Kim, D.T. and Kwan, et al., Chaos, 8, 1, 1998




Problem: How can we classify pathological heart states?
3) Motion Learning: Start SIMPLE...

e 2D.

o Left ventricle.
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Tracking Shape Deformation
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Tracking Shape Deformation
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Meier, D., D.D. Holm, F. Gay-Balmaz, F.X. Vialard, T. Ratiu, Invariant
higher-order variational problems, Communications in Mathematical
Physics, 2011. 21



Electrophysiology
Outline

Electrophysiology
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Electrophysiology

Maxwell’s equations, but...
@ Electrical field strengths are not too high = biological tissue is
assumed to behave linear with regard to its electrical properties.

@ Cardiac electrical activity is reflected by low frequency components
only (< several kHz) = derivatives with respect to time can be
neglected (‘quasi-static’ approximation of Maxwell’s equations)
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Maxwell:
0B
VX E= ~ o
J=-DFE
and...
a—B =0=FE=-—Vu
ot

du

1) ¢
) dt
dw

9y ¥
) dt

Monodomain Model:

=caf(u,w)+ V- (DVu)

= e(u—yw)

3) f(u,w)=cru(u — a)(u — 1) + couw

FitzHugh-Nagumo Model

]ion:f(uvw)
d—w—e(u — yw)
a7

Electrophysiology
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Electrophysiology
Mesh or ... Meshless Method?

o Finite element methods have been extensively used for the spatial
discretization of the myocardium.

o Complicated meshing procedures and element-based interpolation
functions often result in algorithms which are either easy to implement,
but numerically inaccurate, or accurate but labor-intensive

@ The meshfree platform is more adaptive to different cardiac geometries
and thus beneficial to individualized analysis.

AND...
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Electrophysiology
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Electrophysiology

/ \
\/ & e

Particle Methods
o Complicated volume meshing procedures are excluded.

@ No re-meshing is needed for improving spatial accuracy when
deformation occurs.



Moving Least Squares (MLS) Approximation

1. {z1(t),...,2n(t)} nodes (particles) in Q C R®
2. pT(z) = [p1(x), ..., pm(z)] polynomial basis.

Moving Least Squares

Governing equation

Given: @ Approzimate the solution by:
@ locations x;(t), fori=1,...,N,

@ values u(z;,t), fori=1,..,N

u(@) =Y pi(@)ay(z)
k=1

Solve the associated ODE system @ Minimizing the functional
d u N 2
i {uf =2 T =3 wa—a) [p7 (x)al@) ]
i=1

and obtain

o new locations z;(t + At), for (w(x — z;) weighing function with

i1 N compact support)
o new values u(zi, t + At), for @ Solve the MLS problem
t=1,..,N A(z)a(z) = B(z)u
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Electrophysiology

MLS Approximation: Monodomain Model

3. Meshfree approximation

1. Monodomain model

,¢n ()] - shape function

u - membrane potential
w - recovery variable.

% = f(u,w) + V- (DVu)
ow
ot

flu,w) = cru(u — a)(u — 1) — couw

= e(u — yw)

¢ - regular test function

/ o2t = [ stew) = [ veT@va)

v
H¢E:/ﬂ¢€(u_’7w)

® = [p1(2), - -

u ~ du w ~ dw

e - e e

- UQ V<I>TDV¢>] u

7o 2 - [fe]so

?9—1: = f(u,w)+ M~ 'Ku
ow
ot
f(u,w) =ciuo(u—a)o(u—1)—couow

=¢e(u—yw)

where

M:/<I>T<I> K:/Vchqu>
Q Q




Electrophysiology

MLS Approximation: Monodomain Model

1. Monodomain model

u - membrane potential
w - recovery variable. W
% fluw) + V- (DY) R
ow ( )
— =e(u—yw
ot 7 o
flu,w) = cru(u — a)(u — 1) — couw
N

¢ - regular test function

/ o2t = [ stew) = [ veT@va)

v
H¢E:/ﬂ¢€(u_’7w)




Electrophysiology

MLS Approximation: Monodomain Model
3. Meshfree Approximation

1. Monodomain model

u - membrane potential

w - recovery variable. M% + |:/ &7 [(J@))-(}T] u=Mf(u,w)— Ku
ou Q
o = /ww) V- (DVY) M {/ o7 [(J@)x]T} e
ow ot Q
vl e(u — yw)

flu,w) = cru(u — a)(u — 1) — couw

¢ - regular test function

/ o2t = [ stew) = [ veT@va)

v
H¢E:/ﬂ¢€(u_’7w)




Electrophysiology

...Some preliminary results... fixed heart
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Electrophysiology
Thanks for listening...
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