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A problem inspired by Image Registration

How similar/different are 2 images/shapes?

Faces
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A problem inspired by Image Registration

How similar/different are 2 images/shapes?

Brain
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A problem inspired by Image Registration

How similar/different are 2 images/shapes?

Heart
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A problem inspired by Image Registration

How similar/different are 2 images/shapes?

Hypothalamus

Healthy Schizophrenia

Assuming a correlation between healthy state or diseased, and the shape of
the anatomical structure, Can we define a distance between these shapes?
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A problem inspired by Image Registration:

Image Registration (Alignment): Estimation of optimal
transformation between: Images, Points (Landmarks), Curves, Edges,
Scalar functions, etc.

Intensity


Cross-correlation,
Mutual Information,
Sum of Squared Intensity Differences,
Ratio image uniformity.

Models


Linear: Rigid, Affine, Piecewise Affine.

Non-Rigid: Radial basis (thin plate, surface splines),
Viscous fluids, Elastic, Large deformations.
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Building Geodesics: Background

D’Arcy Thompson: “On Growth and Form” (1917)

“To what extent is it true that individuals of closely related species can be
transformed, one into the other, by a conformal transformation which
carries every significant feature of one into the corresponding feature of the
other?”
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Building Geodesics: Background

D’Arcy Thompson: “On Growth and Form” (1917).

Ulf Grenander Mathematical rigor: Use of Lie group action.

A. Trouve, An infinite dimensional group approach for physics based
models in patterns recognition, International Journal of Computer
Vision, 1995. (D. Ebin and J. Marsden, Groups of diffeomorphisms and
the motion of an incompressible fluid, Ann. of Math, 1970.)

Diffeomorphic matching framework, M. Miller, A. Trouve, L. Younes,
On the metrics and Euler Lagrange equations of computational
anatomy. Annual Review of Biomedical Engineering, 2002.

M. Bruveris, F. Gay-Balmaz, D.D. Holm, T.S. Ratiu, The momentum
map representation of images, Journal of Nonlinear Science, 2011.
(Geometric Mechanics)
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Building Geodesics: Generalized Euler Equations (V. Arnold)

Lie group G with Lie algebra g, acting on a general manifold M.

(Right-Left) Invariant Lagrangian on TG: L : TG→ R.

Euler-Poincaré reduction theorem, construct a reduced Lagrangian
l : u ∈ g→ R

E−L equations︷ ︸︸ ︷
δ

∫ b

a

L(ϕ, ϕ̇) dt = 0︸ ︷︷ ︸
Ham.′s Principle

⇔

E−P equations︷ ︸︸ ︷
δ

∫ b

a

l(u) dt = 0︸ ︷︷ ︸
Red. Ham.′s Principle

E − L on TG Legendre Tr.
←−−−−−−−−−−−→

Ham. on T ∗GxyE − P
Red./Reconst.

xy L− P
Red./Reconst.

E − P on g Reduced Legendre Tr.
←−−−−−−−−−−−−−−−−−−−→

L− P on g∗

The kinetic L defines a metric on G, so E − P represents a geodesic
motion on G.
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Generalized Euler Equations: SO(3)

Rotation of rigid bodies in R3 −→ Geodesic motion in SO(3) Lie
group:

L− P equation:

SO(3) :
dΠ

dt
− ad∗ΩΠ = 0 where ad∗ΩΠ = Π× Ω
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Generalized Euler Equations: Diff µ(Ω)

Ideal fluid confined on Ω ⊂ R3, configuration space Diff µ(Ω).

Position of every particle X ∈ Ω: ϕ(t,X), ϕ ∈ Diff µ(Ω).

Right-Invariant Lagrangian on TDiff µ(Ω): L : TDiff µ(Ω)→ R.

With this setup, Ebin and Marsden proved well-possessedness for
incompressible Euler’s equations, starting the field of geometric
hydrodynamics.
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Generalized Euler Equations: Diff (Ω) : EPDiff equation

∂tm+ u · ∇m+ (∇u)
T ·m+m (divu) = 0

or

∂tm+ ad∗um = 0

m: Momentum corresponding to the vector field u,
ad∗: Coadjoint action of the Lie algebra g of Diff (Ω) on g∗.

When Ω = S1, KdV equation: Geodesic flow with respect to the right
invariant L2 metric on the Bott-Virasoro group.

When Ω = S1, Camassa-Holm (C-H) equation: Geodesic flow with
respect to the right invariant H1 metric on the Bott-Virasoro group.
(Existence of geodesics has been proven for this PDE).

In 1-D, EPDiff is:

mt + umx + 2mux = 0 with m = (1− α2∂2
x)u, (1)

i.e., the dispersionless limit of the C-H equation for shallow water
motion, with train of peakons solution.
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Generalized Euler Equations: Diff (Ω) : EPDiff equation
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Generalized Euler Equations: Diff (Ω) : EPDiff equation
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Diffeomorphic Registration: Numerical Model Target

Template

∂tm+ ad∗vm = 0
⇔ ∂t

{
ϕ(t, y)
µ(t)

}
= Fϕ,µ

{
ϕ(y, t)
µ(t)

}
EPDiff (Geodesics on Diff ) ⇔ Hamiltonian System
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Diffeomorphic Registration: Numerical Model

Energy on the initial momentum: E(ρ0) = (ρ0|Kρ0) + λU(ϕ(1))
Variation on the initial momentum: ρ0 → ρ0 + δρ0

δE(ρ0) = 2 (δρ0|Kρ0) + λ

(
δU

δϕ
(ϕ(1))

∣∣∣∣ δϕ(1)

)
(1)

1) From EPDiff ... Linearized model:

∂t

{
δϕ
δµ

}
= Jϕ,µ

{
δϕ
δµ

}
δϕ(0) = 0, δµ(0) = δρ0

2) Adjoint system: ξϕ := δϕ∗, ξµ := δµ∗

∂t

{
ξϕ
ξµ

}
= −J ∗

ϕ,µ

{
ξϕ
ξµ

}
ξϕ(1) =

δU

δϕ
(ϕ(1)), ξµ(1) = 0

3) So (1) becomes

δE(ρ0) = (δρ0| 2Kρ0 + λξµ(0))

⇒ ∇E(ρ0) = 2ρ0 + λK−1ξµ(0) ⇒ ρ0
n+1 = ρ0

n − ε∇E(ρn0 )
14
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Diffeomorphic Registration: Numerical Model

Template Target

Felipe Arrate. “Evolution Equations On The Group Of Diffeomorphisms,
With Applications In Computational Anatomy”. 15
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Examples: Medical Images Registration

L. Younes, Felipe Arrate, M.I. Miller: “Evolution equations in
computational anatomy”. NeuroImage 45 (2009).
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Examples: Miocardial Fibers

Vadakkumpadan, Felipe Arrate, T. Ratnanather, R. Winslow, May 2011.
17
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Problem: Cardiovascular diseases

CHAPTER 2. HUMAN HEART 5

Figure 2.1: Anatomical structure of the human heart. The illustration shows the heart in
a anterior-oblique view after having removed the anterior ventricular wall and the right
atrial appendage.

Heart diseases are today responsible for
the 28% of deaths in western countries
(Cancer is 30%), around 400, 000 deaths
per year in Europe

fatigue
insufficient ventricular contraction

Sudden Death affects 1 in 10, 000 per
year in developed countries

electrical disorder
ventricular fibrillation

GOAL

Classification of pathologic hearts by
individualized model of cardiac
motion and electrophysiology.



- Diagnosis.

- Efficacy of defibrillation in infarcted

hearts.

- Ablation location for correcting

arrhythmias.
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Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

Importance of trabecular fibers.

Electrophysiology.

Detailed description of boundary conditions.

20



Motivation Geodesics Num. Model Heart Motion Electrophysiology

Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

Importance of trabecular fibers.

Electrophysiology.

Detailed description of boundary conditions.

2) “Brainstorming”

Is Aortic pressure enough? Can we accurately (to a good level) get
those measurements?

Attempts using electrocardiogram measurements have their own line of
research, but rough approximations.

Mechanics?. Difficult measurements. Proposed models have more or
less detail on the tensor structure of the fibers, stress tensor, ...

Motion Learning? → Images (cine CT, MRI).
http://www.youtube.com/watch?v=lZZvPgquif4
http://www.youtube.com/watch?v=rhallml-juk
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Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

Importance of trabecular fibers.

Electrophysiology.

Detailed description of boundary conditions.

3) Motion Learning

What can we infer from a study mainly based on medical images?

Is it possible to infer good/bad behaviour just from deformation?.

Do we need to develop new Mathematics?.
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Problem: How can we classify pathological heart states?

1) Understand the physics and background on the problem

Heart Mechanics involves a detailed knowledge of elastic constants at
different levels inside the myocardium.

Importance of trabecular fibers.

Electrophysiology.

Detailed description of boundary conditions.

3) Motion Learning

What do we follow, Tip of the heart? “Patterns of spiral tip motion in
cardiac tissues”, Kim, D.T. and Kwan, et al., Chaos, 8, 1, 1998

FIG. 1. Tracing the tip of the spiral wave. The data were obtained from anin vitro canine right atrium superfused with acetylcholine. The reentry
spontaneously terminated following the fifth cycle. Panel~a! depicts a black and white version of the colored dynamic activation display as seen on the
computer screen at 20–75 ms intervals. Red dots, seen here as dark gray dots, represent the leading edge of the wave front. The color then changes to yellow,
green, blue, and purple before reverting to the background color~seen in this figure as different shades of gray following the wave front!. Each color persists
for 10 ms. The numbers on the upper edge of each picture shows the times of activation in ms, with the beginning of data acquisition as time zero. The red
dot that is nearest to the core of reentry is marked. Arrows indicate the direction of propagation of the spiral tip. Panel~b! illustrates the electrode array in
panel~a! reproduced on a graphics program. Colored arrows correspond to each numbered cycle. Panel~c! represents the approximate wave tip path derived
from panel~b!. The outward petal flower pattern is evident in this final illustration.

139Chaos, Vol. 8, No. 1, 1998 Kim et al.

Downloaded 07 Apr 2001 to 137.189.4.8. Redistribution subject to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Problem: How can we classify pathological heart states?

3) Motion Learning: Start SIMPLE...

2D.

Left ventricle.

20
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Tracking Shape Deformation

T1

T2

T3 T4

T5

ϕa
ϕb

ϕc ϕd

{
y1

ρ1

} {
y2

ρ2

} {
y3

ρ3

} {
y4

ρ4

} {
y5

ρ5

}
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Tracking Shape Deformation

T1

T2

T3 T4

T5ϕy1

ρ1

ρ̇1



Gay-Balmaz et al. Lie group reduction of higher-order invariant variational problems 5

the role of coadjoint motion for cotangent-lift momentum maps.

Section 5 addresses theoretical and numerical results for our main motivation, longitudinal data
interpolation. That is, interpolation through a sequence of data points. After a brief account
of the previous work done in Computational Anatomy (CA), we derive the equations that
generalize the equations for geodesic template matching [BGBHR10] to the case of higher-
order cost functionals and sequences of several data points. We recover in particular the
higher-order Euler-Poincaré equations. For a particular choice of cost functionals one can
therefore think of the higher-order template matching approach as template matching by ge-
ometric k-splines. We discuss the gain in smoothness afforded by the higher-order approach,
then we provide a qualitative discussion of two Lagrangians that are of interest for appli-
cations in CA. Finally, we close the section by demonstrating the higher-order approach to
template matching in the finite dimensional case by interpolating a sequence of points on
the sphere S2, using SO(3) as the Lie group of transformations. This yields the template-
matching analog of the NHP equation of [NHP89] in (1.1). The results are shown as curves
on the sphere in Figures 5.2. A sample figure is shown below to explain the type of results
we obtain.

Fig. 1.1: First order vs. second order template matching results interpolating a sequence of evenly time-separated
points on the sphere, using a bi-invariant metric on the rotation group SO(3). The colors show the local speed
along the curves on the spheres (white smaller, red larger). The motion slows as the curve tightens.

Section 6 extends to kth-order tangents the metamorphosis approach of [HTY09] for image regis-
tration and the optimization dynamics introduced in [GBHR10].

Section 7 addresses Hamiltonian and Hamilton-Ostrogradsky formulations of the higher-order
Euler-Poincaré theory. The Hamilton-Ostrogradsky formulation results in a compound Pois-
son bracket comprising a sum of canonical and Lie-Poisson brackets.

Section 8 discusses the outlook for future research and other potential applications of the present
approach. These include the formulation of higher-order Lie group invariant variational
principles that include both curves on Lie groups and the actions of Lie groups on smooth
manifolds, and the formulation of a kth-order brachistochrone problem.

Meier, D., D.D. Holm, F. Gay-Balmaz, F.X. Vialard, T. Ratiu, Invariant
higher-order variational problems, Communications in Mathematical
Physics, 2011. 21
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CHAPTER 2. HUMAN HEART 7

Figure 2.3: Anatomical and fibrous structure of the human heart shown in a posterior-
anterior oblique view (from [64]). Note the piece of epicardium cut off the left ventricle,
demonstrating the counterclockwise change of the myocardial fiber structure with in-
creasing depth.

Maxwell’s equations, but...

1 Electrical field strengths are not too high ⇒ biological tissue is
assumed to behave linear with regard to its electrical properties.

2 Cardiac electrical activity is reflected by low frequency components
only (≤ several kHz) ⇒ derivatives with respect to time can be
neglected (‘quasi-static’ approximation of Maxwell’s equations)

23
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CHAPTER 2. HUMAN HEART 7

Figure 2.3: Anatomical and fibrous structure of the human heart shown in a posterior-
anterior oblique view (from [64]). Note the piece of epicardium cut off the left ventricle,
demonstrating the counterclockwise change of the myocardial fiber structure with in-
creasing depth.

Maxwell:

∇× E = −∂B
∂t

J = −DE
and...

∂B

∂t
= 0⇒ E = −∇u

−→

Monodomain Model:

1)
du

dt
= c1f(u,w) +∇ · (D∇u)

2)
dw

dt
= ε(u− γw)

3)f(u,w)= c1u(u− α)(u− 1) + c2uw

FitzHugh-Nagumo Model

Iion=f(u,w)

dw

dt
=ε(u− γw)

23
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Mesh or ... Meshless Method?

Finite element methods have been extensively used for the spatial
discretization of the myocardium.

Complicated meshing procedures and element-based interpolation
functions often result in algorithms which are either easy to implement,
but numerically inaccurate, or accurate but labor-intensive

The meshfree platform is more adaptive to different cardiac geometries
and thus beneficial to individualized analysis.

AND...

24
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Ω

ϕ
1 2

3

4

ϕ(Ω)

1 2

3

4
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Ω

ϕ
1 2

3

4

ϕ(Ω)

1 2

3

4

Particle Methods
Complicated volume meshing procedures are excluded.

No re-meshing is needed for improving spatial accuracy when
deformation occurs.
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Moving Least Squares (MLS) Approximation

1. {x1(t), . . . , xN (t)} nodes (particles) in Ω ⊂ R3

2. pT (x) = [p1(x), . . . , pm(x)] polynomial basis.

Governing equation

Given:

locations xi(t), for i = 1, ..., N ,

values u(xi, t), for i = 1, ..., N

Solve the associated ODE system

d

dt

{
u
w

}
= Φ(u,w)

and obtain

new locations xi(t+ ∆t), for
i = 1, ..., N ,

new values u(xi, t+ ∆t), for
i = 1, ..., N

Moving Least Squares

Approximate the solution by:

u(x) =
m∑
k=1

pk(x)ak(x)

Minimizing the functional

J =
N∑
i=1

w(x−xi)
[
pT (xi)a(x)− ui

]2
(w(x− xi) weighing function with
compact support)

Solve the MLS problem

A(x)a(x) = B(x)u

26
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MLS Approximation: Monodomain Model

1. Monodomain model

u - membrane potential
w - recovery variable.

∂u

∂t
= f(u,w) +∇ · (D∇u)

∂w

∂t
= ε(u− γw)

f(u,w) = c1u(u− α)(u− 1)− c2uw

2. Weak formulation

φ - regular test function∫
Ω
φ
∂u

∂t
=

∫
Ω
φ f(u,w)−

∫
Ω
∇φT (D∇u)∫

Ω
φ
∂v

∂t
=

∫
Ω
φ ε(u− γw)

3. Meshfree approximation

Φ = [φ1(x), . . . , φN (x)] - shape function

u ∼ Φu w ∼ Φw[∫
Ω

ΦTΦ

]
∂u

∂t
=

[∫
Ω

ΦTΦ

]
f(u,w)

−
[∫

Ω
∇ΦTD∇Φ

]
u[∫

Ω
ΦTΦ

]
∂w

∂t
=

[∫
Ω

ΦTΦ

]
ε(u− γw)

4. ODE system

∂u

∂t
= f(u,w) +M−1K u

∂w

∂t
= ε(u− γw)

f(u,w) = c1u ◦ (u− α) ◦ (u− 1)− c2u ◦w

where

M =

∫
Ω

ΦTΦ K =

∫
Ω
∇ΦTD∇Φ
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MLS Approximation: Monodomain Model

1. Monodomain model

u - membrane potential
w - recovery variable.

∂u

∂t
= f(u,w) +∇ · (D∇u)

∂w

∂t
= ε(u− γw)

f(u,w) = c1u(u− α)(u− 1)− c2uw

2. Weak formulation

φ - regular test function∫
Ω
φ
∂u

∂t
=

∫
Ω
φ f(u,w)−

∫
Ω
∇φT (D∇u)∫

Ω
φ
∂v

∂t
=

∫
Ω
φ ε(u− γw)

W

R

O

N

G!

!

!

27



Motivation Geodesics Num. Model Heart Motion Electrophysiology

MLS Approximation: Monodomain Model

1. Monodomain model

u - membrane potential
w - recovery variable.

∂u

∂t
= f(u,w) +∇ · (D∇u)

∂w

∂t
= ε(u− γw)

f(u,w) = c1u(u− α)(u− 1)− c2uw

2. Weak formulation

φ - regular test function∫
Ω
φ
∂u

∂t
=

∫
Ω
φ f(u,w)−

∫
Ω
∇φT (D∇u)∫

Ω
φ
∂v

∂t
=

∫
Ω
φ ε(u− γw)

3. Meshfree Approximation

M
∂u

∂t
+

[∫
Ω

ΦT [(JΦ)ẋ]T
]

u = Mf(u,w)−Ku

M
∂w

∂t
+

[∫
Ω

ΦT [(JΦ)ẋ]T
]

w = Mε(u− γw)
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...Some preliminary results... fixed heart

28
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Thanks for listening...
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