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The comparison of four control schemes based on neural networks for teaching purposes is studied
in this paper. The inverse model, inverse model loop, direct scheme with and without models are
investigated and compared. The study is based on computer simulations of linear and nonlinear
single-input single-output (SISO) typical plants and take into account different aspects such as the
training period, the training method (on-line, off-line, simple or with epochs, etc.) network
configuration and training signals amongst others. This set of experiences can be used in an
advanced control course in the Electrical Engineering curricula, to teach different aspects of neural
control.

INTRODUCTION

THE NECESSITY of controlling complex dynami-
cal systems under uncertainties motivates the use of
neural networks (NN) due to their capacity of
learning, approximate functions, classify patterns
and the potential of using parallel hardware. Nowa-
days, the NN field has a very broad range of
applications [1±6], making its study an important
subject in Electrical Engineering Programs.

The most commonly used type of NN is the so-
called feedforward multilayer, where no informa-
tion is fedback during the operation. Certainly,
there is feedback information during the training
process. Supervised training methods are typically
used when the NN is trained to learn about input/
output patterns. Often, versions of the backpropa-
gation learning algorithms are used to adjust the
synaptic weights during the training process.
Generally, this algorithm is slow and usually take
a long time to converge [7]. The neural activation
functions are usually sigmoid functions, but
Gaussiann functions are also used [8].

The property of multilayer NN of approximat-
ing functions [9] is a key factor in the majority of
control applications. Such a NN are able to gener-
ate input/output mappings that approximate any
function with any degree of accuracy, having a
suitable number of hidden layers. Any approxima-
tion can be done using a multilayer NN with only
one hidden layer or two weighting layers [10].

In modeling the input/output behavior of a
dynamical system the NN is trained using input/
output data and the weights are adjusted using
usually the backpropagation method [7]. Since
typical applications involve nonlinear systems,
the NN is trained for a class of inputs and initial
conditions. The basic assumption is that the static
map generated by the NN can suitably represent
the behavior of the system in the operating range
for a particular application.

When a multilayer NN is trained as a controller
(either in open or closed loop) all the previous
conclusions can also be drawn. The difference is
that the NN desired output is not really available
(the controller has to generate a suitable input to
the plant) so it has to be induced from the know-
ledge of the plant desired output. To this extent,
model-based approximations or NN models for
the plant or its inverse are used. In the latter it is
assumed that the inverse dynamics of the plant can
be represented by a NN [8, 9, 11±13]. Several other
control strategies based on NN have been lately
proposed in the control literature [14±22] and
recently, a special issue of Journal Automatica
has been devoted to this important subject [23].

Since teaching advanced control strategies
involve NN, a comparative study of four classical
control schemes based on NN is performed in this
work. The dynamical processes used in the study
are linear and nonlinear plants of first and second
order, and they are taken from the control litera-
ture [7]. Simulation tools were specially developed
in MATLAB SIMULINK to work in a modular
environment.* Accepted 30 September 2003.
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The study takes into account different aspects
such as the training period, the training method
(on-line, off-line, simple or with epochs) network
configuration and training signals amongst others.
This set of experiences are used to teach NN
control in the course EL650 Advanced Control
at the Electrical Engineering Department of the
University of Chile.

NEURAL NETWORK CONTROL
STRUCTURES

A brief description of the control structures
based on NN that will be used in this study is
given in what follows. The purpose of this descrip-
tion is to give the reader only the basis of these
methods since a deeper understanding can be
obtained directly from the references given in
each case.

Representative examples of control structures
using neural networks can be found in [11, 24]
applied to linear and nonlinear plants. The
network parameters are adjusted either off-line or
on-line. These control schemes can be classified as
direct or indirect control schemes. In the former
the parameter adjustment of the NN is performed
in such a way that a measure of the tracking error
is minimized (difference between the actual plant
output and the desired plant output). In the latter
the neural networks are used to identify the
plant and its inverse, and the learning objective is
to minimize the identification error (difference
between the actual plant output and the estimated
plant output).

Dynamic inverse control scheme
The control schemes showed in [25, 26] and the

generalized learning scheme mentioned in [12] are
based on the identification of the plant inverse
dynamic. That is to say, the controller is
constructed to approximate the plant inverse
dynamic (see Fig. 1). These networks are applic-
able to those cases where the plant can be exactly
represented by a discrete model and its dynamics is
invertible [25, 27]. For simulation purposes the
block denoted by N.N. in Fig. 1 is a tool developed

in SIMULINK which represent the inverse
dynamic of the plant.

An important aspect of inverting a system
dynamic is the availability of the state variables
of the plant. In the discrete time case, where the
plant is represented by NARMAX models [28], the
inverse is defined in terms of the past values of the
input and the output.

Dynamic inverse in the control loop
More conventional schemes using standard

controllers of PID type and the system inverse
have also been studied [13]. In this case the
neural network represents, as approximate as pos-
sible, the dynamic inverse of the plant in the
working range, so that the neural network in
series with the plant are seen by the controller as
a much simpler transfer function. (See Fig. 2).

Direct control scheme without model
In this scheme the parameters of the controller

network are adjusted accordingly with the gradient
of a cost function defined in terms of the output
error. The derivatives of the output error with
respect to the control signals are computed in an
approximate fashion by finite differences [12]. The
method to approximate the partial derivatives are
given in the Appendix.

This scheme can be applied even in those cases
where the dynamic of the system in not invertible
(see Fig. 3). For simulation purposes the block
called N.N. in Fig. 3 is a tool developed in
SIMULINK which implements a controller with
a neural network trained on-line.

Direct control scheme with model
In this control scheme, the parameters of the

controller network are adjusted in the same way as
in the previous scheme accordingly with the gradi-
ent of a cost function. The derivatives of the
output error with respect to control signals are
computed via back propagation of the error
through the neural model of the process (identifi-
cation network represented by N.N.2 in Fig. 4)
[7, 25]. This scheme can also be applied in those
cases where the dynamic of the plant is not inver-
tible. For simulation purposes the identification

Fig. 1. Dynamic inverse control scheme; Method C1.

Fig. 2. Dynamic inverse in the control loop scheme; Method C2.
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network (N.N.2) and the controller network
(N.N.1) in Fig. 4 are tools developed in SIMU-
LINK, which represent the dynamic of the plant,
trained either off-line or on-line, and the controller
of the plant respectively.

COMPARISON OF THE CONTROL
SCHEMES

To evaluate the behavior of the four different
control schemes mentioned in the previous section,
they were applied to control first and second order
linear and nonlinear processes. The processes are
described by equations or transfer functions (1)
through (4) and some of them were taken from
reference [7], since they have been thoroughly
analyzed using different NN controllers.

Linear systems:

H�z� � :00995

zÿ :99
�1�

H�z� ÿ :00487z� :00474

z
2 ÿ 1:91z� :923

�2�

Non-linear systems:

yp�k � 1� � yp�k�
1� yp�k�2

� u3�k� �3�

yp�k � 1� � yp�k� yp�k ÿ 1� yp�k� � 2:5
� �

1� y2
p�k� � y2

p�k ÿ 1� � u�k�

�4�

NEURAL NETWORK CHARACTERISTICS

The networks used in this study are of feedfor-
ward type with linear activation function in the
output layer and tanh activation functions in the
hidden layers. This type of neural networks is quite
known and can be easily implemented in real time.

The feedforward networks with at least one
hidden layer are able to approximate any
nonlinear function with an arbitrary degree of
accuracy [9]. For nonlinear cases it is enough to
consider neural networks with three layers of
synaptic weights: an input stage, two hidden
layers and one output layer. With two hidden
layers a better convergence of the training process
is achieved.

To describe the topology of the feedforward
multilayer neural networks, the following notation
is used

N
N
i1;i2;::: iN�1

where

N: number of layer with synaptic
weights

i1: number of inputs
iN�1 number of outputs
i2; i3; :::; iN: number of neurons in the �Nÿ 1�

hidden layers.

For example N3
5;20;10;1 denotes a neural network

with 3 layers with synaptic weights, 5 inputs, 20
neurons in the first hidden layer, 10 in the second
and 1 in the output layer.

Denoting by u the input and y the output, with n
and m representing the number of their past values

Fig. 3. Direct control scheme without model; Method C3.

Fig. 4. Direct control scheme with model; Method C4.
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respectively, a neural network of those used in this
study is represented as:

y�k � 1� � N�u�k�; u�k ÿ 1�; : . . . ; u�k ÿ n� 1�;
y�k�; y�k ÿ 1�; . . . ; y�k ÿm� 1�� �5�

After a series of simulations tests it was determined
that the most suitable characteristics of the NN
used in each studied control configuration, for
each process to be controlled, are the following:

1. Linear first-order equation:
� Structure N1

3;1� Inputs �u�k�; u�k ÿ 1�; y�k��
2. Linear second-order equation:
� Structure N1

5;1� Inputs �u�k�; u�k ÿ 1�; u�k ÿ 2�;
y�k�; y�k ÿ 1��

3. Nonlinear first-order equation:
� Structure N3

3;20;10;1� Inputs �u�k�; u�k ÿ 1�; y�k��
4. Nonlinear second-order equation:
� Structure N3

5;20;10;1� Inputs �u�k�; u�k ÿ 1�; u�k ÿ 2�,
y�k�; y�k ÿ 1��

The NN used to model the inverse or direct dynamic
of the process was trained off-line, whereas the NN
used to control were trained on-line.

Epochs of 300 pairs of data were used in the off-
line training, obtained from a random noise
uniformly distributed in the range [±2,�2] used as
input signal. The training period was 10 000
epochs.

The signal sin(t)� sin(4t) was used as input
signal for the on-line training of NN controller.
Thus, the network is trained with similar type of

signals used in the reference (sin(2t) ) with a learn-
ing rate of 0.25. In all cases sampling period of 0.01
was used.

Generation of dynamical neural model
In the control schemes mentioned in Section 2,

the direct or the inverse dynamic of the process is
used. To implement these dynamics with neural
networks, functional modular tools were devel-
oped in SIMULINK [29] to generate the neural
networks, to generate and to store data for the
training stage, to train and to test the dynamic
once the NN is trained.

For example, Figs 5 and 6 show the data
generation and data storage for training purposes
and also for testing the dynamic (direct and
inverse) of the process, once the NN has been
trained. Blocks of noise generation, data storage,
direct NN and inverse NN are employed.

SIMULATION RESULTS

The control configurations described in the
second section with the structure defined in the
third section, applied to each one of the processes
described by equations (1) through (4), were tested
by simulation using as reference input the signal
r(t)� sin(2t).

For each case studied, several simulation tests
were previously performed and the results shown
for each plant in this section are the best found
using all the information acquired from these tests.
These previous tests allowed to define a series of
parameters involved in the NN such as the training
period, the training method (on-line, off-line,

�a�

�b�

Fig. 5. Direct dynamics; a) data storage; b) network testing.
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simple or with epochs) network configuration,
training signals. training rate, etc.

Linear first-order plant
Figures 7, 8, 9 and 10 show the behavior of the

controlled systems when the four methods
mentioned in the second section are applied to
the first-order plant described by equation (1).

It is observed that schemes C1 and C2 behave
quite well for all times and the true output y(t)
reaches the reference signal r(t), since the NN have
been trained off-line using a long period of time.
Schemes C3 and C4 are trained on-line and the
adjustment is done at each sampling period. This
explains the difference between the true output and
the reference observed during the first instants of
time exhibited by control scheme C3, but finally
the output reaches the reference. The control
scheme C4 shows a bigger difference between y(t)
and r(t) because of the NN controller and the NN
identifier are adjusted on-line, and therefore the

time needed to adjust both networks is much
longer as shown in Fig. 10.

Linear second-order plant
Figures 11, 12, 13 and 14 present the response of

the controlled linear second-order system (2) using
the four schemes described in second section.

Control schemes C1 and C2 have the same
training period of that used in the linear first
order case, although the error between y(t) and r
(t) is larger. Instead, in control schemes C3 and C4
the training period was augmented nv times, where
nv is the number of vectors considered in one
epoch, obtaining a reduction in the tracking error
as shown in Figs 13 and 14.

Non-linear first-order plant
Figures 15, 16, 17 and 18 illustrate the behavior

of the controlled nonlinear first order system
applying the four schemes described above.

In this case the four schemes hardly control the

�a�

(b)

Fig. 6. Inverse dynamics: a) data storage; b) network testing.

Fig. 7. Dynamic inverse method applied to a linear first-order plant.
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Fig. 8. Dynamic inverse in the loop method applied to a linear first-order plant.

Fig. 9. Direct scheme without model applied to a linear first-order plant.

Fig. 10. Direct scheme with model applied to a linear first-order plant.
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Fig. 11. Dynamic inverse method applied to a linear second-order plant.

Fig. 12. Dynamic inverse in the loop method applied to a linear second-order plant.

Fig. 13. Direct scheme without model applied to a linear second-order plant.
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Fig. 14. Direct scheme with model applied to a linear second-order plant.

Fig. 15. Dynamic inverse method applied to a nonlinear first-order plant.

Fig. 16. Dynamic inverse in the loop method applied to a nonlinear first-order plant.
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Fig. 17. Direct scheme without model applied to a nonlinear first-order plant.

Fig. 18. Direct scheme with model applied to a nonlinear first-order plant.

Fig. 19. Dynamic inverse method applied to a nonlinear second-order plant.
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Fig. 20. Dynamic inverse in the loop method applied to a nonlinear second-order plant.

Fig. 21(a). Direct scheme with model applied to a nonlinear second-order plant; transient stage.

Fig. 21(b). Direct scheme with model applied to a nonlinear second-order plant; stationary stage.
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process in the zone where the nonlinearity is more
severe. The scheme C4 exhibits the best response of
all.

Nonlinear second-order system
Figures 19, 20, 21(a) and 21(b) indicate the

behavior of the controlled nonlinear second-order
system employing three of the four schemes shown
above.

The response of the system using the scheme C3
is not shown since the overall response is quite
oscillatory with a large amplitude. Figure 21(a)
shows the transient part of the response using
scheme C4, whereas Fig. 21(b) shows the station-
ary part. Scheme C4 exhibits the best response of
all schemes applied in this case.

CONCLUSIONS

Teaching advanced control strategies is an
important topic in the automatic control area.
Electrical Engineering students who decide to
specialize in control have many different choices
to control linear and nonlinear plants, depending
upon their complexity. One of the most challen-
ging methods to control industrial plants is based
on NN. From the set of experiences based on NN
control studied in this paper, we can draw the
following conclusions.

The control scheme C1 gives in general a good
response in almost all the processes studied
depending only on the training of the neural
networks. Similar to all other control schemes,
this scheme does not perform well when faced to
control the nonlinear second-order system. The
main drawback of this scheme is the fact that
external perturbations or parameter variations
cannot be properly handled since no feedback
route is available.

The control scheme C2 is the one which exhibits
the best overall performance in all the cases
studied. External perturbation and parameter vari-
ations can be handled since a feedback route is
present. If the input data to NN has a range
beyond the range used during the training period

or parameter variations are large enough, the
response is heavily affected since the NN has a
limited range of generalization.

The control scheme C3 has a poor behavior
when faced to control nonlinear systems of order
two or higher with severe nonlinearities. This is
mainly due to the fact that derivatives of errors
with respect to the control signals (approximated
by finite difference [12] ) are used in the adjustment.

The control scheme C4 has a poor behavior in
the transient stage when it is used to control
nonlinear second-order (or higher) plants, but in
steady-state the results are quite acceptable. A
longer training period on-line with respect to
scheme C3 is needed since the identification error
given by the NN identifier is used. The NN
controller uses only the present value of the error
to adjust the parameters on-line.

If process parameters do not change with time
(or the rate of change is slow) control scheme C2
still exhibits a reasonably good behavior. Control
scheme C2, with its on-line adjustment, presents a
quite good response since the scheme is adjusted
when changes in plant parameters are produced.

Furthermore, a new alternative scheme can be
obtained based on control scheme C4 by adjusting
the synaptic weight using the present value of the
error as well as the past and the future values.
This can be done introducing a third NN being
able to predict the future values of the error. The
main challenge here is to consider the error propa-
gation of present and past values between the NN
identifier and the NN controller.

Based on the set of experiences developed in this
paper, a computer simulation laboratory has been
designed for the course EL650 Advanced Control,
lectured at the Electrical Engineering Department
of the University of Chile since Fall 1999. Student
motivation for knowing and applying NN control
strategies has noticeably increased since the
laboratory implementation in the course.
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APPENDIX

In the training stage of the control scheme C3 it is necessary to know the variation of the process output
with respect to the control signals, i.e. the partial derivatives.

The partial derivative approximation between the output and the input of a process can be done using a
Taylor series expansion. First, the derivative of a function with respect to time is approximated using its
past values as follows:

Let us define

h time delay

lo � f �t� �A1�
l1 � f �tÿ h� �A2�
l2 � f �tÿ 2h� �A3�
l3 � f �tÿ 3h� �A4�

x1 � f 0�t� �A5�
x2 � f

00 �t� �A6�
x3 � f 000�t� �A7�
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Using the Taylor series expansion of function f(t), considering the first four terms and replacing the
definitions stated in equations (A1) through (A7), the following set of equations is obtained:

l1 � l0 ÿ hx1 � h2

2
x2 ÿ h3

6
x3 �A8�

l2 � l0 ÿ 2hx1 � 4
h2

2
x2 ÿ 8

h3

6
x3 �A9�

l3 � l0 ÿ 3hx1 � 9
h2

2
x2 ÿ 27

h3

6
x3 �A10�

Solving the set of equations for x1 we get:

f 0�t� � 17f �t� ÿ 18f �tÿ h� � 9f �tÿ 2h� ÿ 8f �tÿ 3h�
6h

�A11�

Using the notation:

T � h �A12�
t � kT �A13�

and replacing in equation (A11) we obtain:

f 0�k� � 17f �k� ÿ 18f �k ÿ 1� � 9f �k ÿ 2� ÿ 8f �k ÿ 3�
6T

�A14�

We know that:

@f �t�
@x�t� �

df �t�
dt

dx�t�
dt

� f 0�t�
x;�t� �A15�

Then, the approximation of the partial derivative can be obtained by replacing f 0�t� and x0�t� in (A15) by
the approximations given by (A14):

@f �t�
@x�t� �

f 0�k�
x0�k� �

17f �k� ÿ 18f �k ÿ 1� � 9f �k ÿ 2� ÿ 8f �k ÿ 3�
17x�k� ÿ 18x�k ÿ 1� � 9x�k ÿ 2� ÿ 8x�k ÿ 3� �A16�
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