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Abstract

Accurate sampled-data models are required when a
digital device interacts with a continuous-time sys-
tem. Even though exact sampled models can be ob-
tained for linear systems, simple approximate mod-
els are sometimes preferred in applications to reduce
computational load or to preserve the role of phys-
ical parameters. In this paper we quantify the fre-
quency domain relative error of three kinds of approx-
imate sampled models: (i) simple models obtained by
derivative approximations (such as Euler and Tustin),
(ii) models obtained including the asymptotic sam-
pling zeros, and (iii) models obtained by a truncated
Taylor expansion of the system state equations. In
particular, we characterize the bandwidth where each
of the proposed models provides the highest accuracy.

1 Introduction

Most real systems and processes evolve in continuous-
time, however, nowadays most control strategies are
implemented using digital devices. As a conse-
quence, discrete-time representations are required to
be, both, simple and accurate in order to achieve
good performance of control strategies or in identifi-
cation algorithms. For linear systems, exact sampled-
data models can be obtained, for example, assuming
a zero-order hold (ZOH) input (see, e.g., [4]). One of
the consequences of the sampling process is the pres-
ence of, so called, sampling zeros in the associated
discrete-time transfer function. These zeros have no
counterpart in the underlying continuous-time model
[3]. In fact, the specific characterization of these zeros
depends on the hold device used to generate the in-
put [12, 24, 2]. Similar results have been obtained for
sampled models for linear stochastic systems [19, 21].
Moreover, in the nonlinear case, the presence of sam-
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pling zero dynamics has been also characterized based
on normal forms [16, 15, 22, 11, 23, 13, 10].

In this paper we quantify the accuracy of approx-
imate sampled-data models for linear deterministic
systems in terms of the associated relative error in
the frequency domain. Model accuracy is a key is-
sue for control. In fact, there are cases where a con-
troller based on an approximate model that stabilizes
the nominal control loop for every sampling period
∆ > 0, may fail to stabilize the true continuous-time
model no matter how small the sampling period is
chosen [17]. In [6] the accuracy of a class of approxi-
mate sampled models (not considered in this paper)
was characterized in terms of the ratio between the
models as a function of the sampling period.

The current paper is a continuation of the work
presented in [9] and [1] where approximate sampled
models were considered for deterministic and stochas-
tic systems, respectively. In particular, we extend the
results in [9] by characterizing the bandwidth where
the different models provide the highest accuracy. We
include in the analysis a class of models obtained
truncating the Taylor series expansion of the state
equations (as in [22]) not been previously considered
in [9].

The paper structure is as follows: Section 2
presents background on sampling of linear systems.
Section 3 presents the approximate sampled-data
models considered in the current work. In Section
4 we define the relative error measures and we ob-
tain their H∞ norm. The main results of the paper
are presented in Section 5, where we study the band-
width where each model provides the highest accu-
racy. Finally, Section 6 presents examples and Sec-
tion 7 presents conclusions.
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2 Background on sampling of
linear systems

We consider a linear system given by the transfer
function:

G(s) =
F (s)

E(s)
=

∏m
k=1(s− σk)∏n
i=1(s− pi)

(1)

The system relative degree is r = n−m > 0. Note
that if a gain is included in the model, it would only
act as a scaling factor in our developments. We as-
sume that the system input is generated using a zero-
order hold (ZOH):

u(t) = u(k∆) = uk ; k∆ ≤ t < (k + 1)∆ (2)

where ∆ is the sampling period. If the system out-
put is sampled instantaneously yk = y(k∆), then the
exact sampled-data model is given by

Gd(z) =
Fd(z)

Ed(z)
=

(z − 1)

z
Z
{
L−1

{
G(s)

s

} ∣∣∣
t=k∆

}
(3)

=
(z − 1)

z

1

2πj

γ+j∞∫
γ−j∞

es∆

z − es∆
G(s)

s
ds

(4)

where γ > maxi{Re{pi}} and {pi} are the poles of
G(s). The complex integral in (4) can be solved clos-
ing the integration path to the left half of the complex
plane [8], which leads to

Gd(z) =
(z − 1)

z

n+1∑
`=1

Ress=d`

{
G(s)

s

es∆

z − es∆

}
(5)

where d` ∈ {0, p1, . . . , pn}. Alternatively, if we close
the integration path in (4) to the right half of the
complex plane, we obtain [4]:

Gd(e
s∆) = (1− e−s∆)

∞∑
`=−∞

G(s+ 2πj`/∆)

s∆ + 2πj`
(6)

Equations (5) and (6) provide different insights
about the sampled-data model: if we replace s = jω
in (6) we can notice the aliasing effect, i.e., the
sampled-data frequency response is obtained by fold-
ing the continuous system frequency response down
to the band [− π

∆ ,
π
∆ ]. On the other hand, equation

(5) shows a clear mapping of the systems poles from

the continuous to the discrete domain, i.e., s = pi
maps to z = epi∆.

The mapping of the system zeros is much more
involved. Moreover, the sampled-data model (3) has,
in general, relative degree one. This means that there
are sampling zeros in the discrete model which have
no continuous-time counterpart. These extra zeros
can be asymptotically characterized for fast sampling
rates [3]:

Gd(z)
∆≈0−−−→ ∆r Br(z) (z − 1)m

r! (z − 1)n
(7)

where Br(z) are the Euler-Fröbenius polynomials
[20].

Br(z) = br1z
r−1 + br2z

r−2 + . . .+ brr (8)

brk =

k∑
`=1

(−1)k−` `r
(
r + 1

k − `

)
(9)

These polynomials satisfy several properties:

1. From (8) and (9) it follows that Br(1) = r!

2. The coefficients can be computed recursively,
i.e., br1 = brr = 1, for all r ≥ 1, and

brk = kbr−1
k + (r − k + 1)br−1

k−1 (10)

for k = 2, . . . , r − 1.

3. The coefficient are symmetric, i.e., brk =
brr−k+1.It follows that

Br(z) = zr−1Br(z
−1) (11)

4. A consequence is that, when r is an even number,
Br(−1) = 0.

5. Their roots are always negative real and satisfy
an interlacing property: every root of the poly-
nomial Br+1(z) lies between every two adjacent
roots of Br(z), for all r ≥ 2.

6. The following recursive relation holds:

Br+1(z) = z(1− z)Br ′(z) + (rz + 1)Br(z) (12)

for all r ≥ 1, and where Br
′ = dBr

dz .

Additionally, we will use the following property:

Lemma 1. Let Br(z) be the polynomial of Euler-
Fröbenius of order r, then the derivative at z = 1 is
given by:

B′r(1) =
r!(r − 1)

2
(13)
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Proof. If we differentiate equation (11) we obtain:

B′r(z) = (r − 1)zr−2Br(z
−1)− zr−3B′r(z

−1) (14)

The result is obtained evaluating z = 1 and using
property (1).

3 Approximate sampled-data
models

In this section we present the different approximate
sampled models considered in our analysis. In the
next sections we will compare the relative error as-
sociated with these models and their bandwidth of
accuracy. We compare the proposed models with the
Exact Sampled Data (ESD) model given in (3),
i.e.,

GESDd (z) = Gd(z) (15)

We consider the following three classes of approxi-
mate sampled-data models

1. A Simple Derivate Replacement (SDR)
model obtained using the Euler approximation
for time derivatives, i.e., we replace s = z−1

∆ in
(1):

GSDRd (z) = G( z−1
∆ ) (16)

This model does not include any sampling
zero and has the same relative degree as the
continuous-time system. In fact, this introduces
additional delays in the sampled model (see, e.g.,
[18]).

Additionally, we consider a Tustin Derivate
Replacement (TDR) model, commonly used
in applications. This model is based on a first
order approximation of the natural logarithm
s = ln(z)/∆, i.e.

GTDRd (z) = G
(

2
∆
z−1
z+1

)
(17)

This model has relative degree equal to 0, but
does not include any of the sampling zeros in
(7).

2. Asymptotic Sampling Zeros (ASZ) model:
This model is similar to the SDR model (16),
but we include the asymptotic sampling zeros
defined by the Euler-Fröbenius polynomial, i.e.,

GASZd (z) =
Br(z)

r!
GSDRd (z) (18)

The scaling factor 1/r! ensures GASZd (1) = G(0).

When r an even number, Br(z) has a root at
z = −1. This makes the relative error corre-
sponding to the ASZ model to grow to infinity
as we approach the Nyquist frequency π

∆ (see
Section 4). We thus also introduce a Corrected
Sampling Zeros (CSZ) model that includes a
refined approximation of the asymptotic sam-
pling zero at z = −1 when r is an even num-
ber. We do this in order to keep the associated
relative error bounded. The model is given by

GCSZd (z) =
K(z)

K(1)
GASZd (z) (19)

where

K(z) =
(z + 1 + c∆)

(z + 1)
(20)

When r is an odd number, then c∆ = 0 and, as
a consequence GCSZd (z) = GASZd (z). When r is
an even number, then c∆ is chosen such that an
approximation of the order of ∆ of the sampling
zero around z = −1 is obtained [7], i.e.,

c∆ =
∆

r + 1

{
n∑
i=1

pi −
m∑
k=1

σk

}
(21)

3. Different-order Taylor Expansion (DTE)
model: This model was proposed in [22] for non-
linear systems expressed in the, so called, normal
form [14] based on the idea that, for a system
having relative degree r, one needs to differen-
tiate the output r times in order to make the
system input to appear explicitly. A state-space
representation of a linear system in normal form
is given by [14]

ẋ1

...
ẋr−1

ẋr
η̇

 =


x2

...
xr

Q11ξ +Q12η + u
Q21ξ +Q22η

 (22)

where ξ = [x1, . . . , xr]
T , η = [xr+1, . . . , xn]T ,

and the system output is y = x1. Explicit ex-
pressions for Qij above are given in (50)-(53).
An approximate sampled-data model is then ob-
tained performing a Taylor series expansion of
each state up to an order such that the input
explicitly appears. This leads to the model
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
q x1

...
q xr−1

q xr
q η

 =


x1 + ∆x2 + . . .+ ∆r

r!
(Q11ξ +Q12η + u)

...

xr−1 + ∆xr + ∆2

2
(Q11ξ +Q12η + u)

xr + ∆(Q11ξ +Q12η + u)
ηk + ∆(Q21ξ +Q22η)


(23)

where q is the forward shift operator, and the
output of the sampled model is y = x1. Thus,
an associated transfer function GDTEd (z) can be
obtained from (23).

A consequence of Lemma 2 (below) for systems
with relative degree r an even number, is that
we have to introduce a Corrected Different-
order Taylor Expansion (CTE) model in or-
der to keep the associated relative error bounded
near the Nyquist frequency (as we modified ASZ
models to obtain CSZ models):

GCTEd =
K(z)

K(1)
GDTEd (z) (24)

where K(z) is defined in (20)-(21).

[9] considered the SDR, ASZ, and CSZ models and
their associated maximum relative error. In this pa-
per we include in our analysis the TDR model, based
on the Tustin approximation of derivatives, and the
two other models (DTE and CTE) that arise applying
the sampling strategy proposed in [22]. In particular,
the DTE model satisfies the following property:

Lemma 2. Consider the approximate sampled-data
model (23), where the output is y = x1. Then, the
zeros of the associated discrete time transfer function
GDTEd (z) are given by

1. An Euler approximation of the intrinsic zeros of
the system, i.e., they appear at z = 1 + ∆σk.

2. The asymptotic sampling zeros corresponding to
a system of relative degree r, i.e., the roots of
Br(z).

Thus, the associated transfer function has the form

GDTEd (z) =
Br(z)F ( z−1

∆ )

r!Ẽ(z)
(25)

Proof. It follows directly from [22, Theorem 2], where
it is shown that the zero dynamics of the approximate

sampled model are given by (i) the intrinsic zero dy-
namics discretized using Euler approximation, and
(ii) the sampling zero dynamics, whose eigenvalues
are equal to the asymptotic sampling zeros described
by the Euler-Fröbenius polynomials. For linear sys-
tems, the eigenvalues of the zero dynamics correspond
to the zeros of the transfer function [14].

The mapping of the continuous-time poles to the
roots of Ẽ(z) of the DTE model (25) is not straight-
forward to obtain (see Appendix A). This is in con-
trast to the exact sampled-data model (5), where the
mapping of the poles is easily obtained, i.e., they ap-
pear at z = epi∆, but the mapping of the zeros is
much more involved. In fact, the mapping of the in-
trinsic and sampling zeros is thoroughly discussed in
[7].

4 Relative errors

In this section we consider the error associated with
each of the previous models when compared to the
exact sampled-data model (4). We define the follow-
ing relative error measures in the frequency domain:

Ri1(ω) =

∣∣∣∣GESDd (ejω∆)−Gid(ejω∆)

GESDd (ejω∆)

∣∣∣∣ (26)

Ri2(ω) =

∣∣∣∣GESDd (ejω∆)−Gid(ejω∆)

Gid(e
jω∆)

∣∣∣∣ (27)

where the superscript i ∈ {SDR, TDR, ASZ, CSZ,
DTE, CTE}. The relative error above are defined for
frequencies up to the Nyquist frequency, i.e., in the
range [0, π∆ ].

Theorem 3. The relative error performance of the
approximate sampled-data models DTE, CTE and
TDR are as follows:

Relative error r: odd r: even

‖RSDR1 (ω)‖∞ O(1) O( 1
∆ )

‖RTDR1 (ω)‖∞ O(1) O(1)

‖RASZ1 (ω)‖∞ O(∆) O(1)

‖RCSZ1 (ω)‖∞ O(∆) O(∆)

‖RDTE1 (ω)‖∞ O(∆) O(1)

‖RCTE1 (ω)‖∞ O(∆) O(∆)
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Relative error r: odd r: even

‖RSDR2 (ω)‖∞ O(1) O(1)

‖RTDR2 (ω)‖∞ ∞ ∞

‖RASZ2 (ω)‖∞ O(∆) ∞

‖RCSZ2 (ω)‖∞ O(∆) O(∆)

‖RDTE2 (ω)‖∞ O(∆) ∞

‖RCTE2 (ω)‖∞ O(∆) O(∆)

where ‖R(ω)‖∞ = supω∈[0, π∆ ] |R(ω)|

Proof. See Appendix A.

Theorem 3 presents the maximum magnitude of
the error as a function of the sampling period. How-
ever, no insights are given into the accuracy of the
approximate models at different frequencies. The fol-
lowing section provides more details on the behavior
of the relative errors for low and high frequencies.

5 Bandwidth of accuracy

In this section we present the main result of the pa-
per: we characterize the bandwidth where each ap-
proximate sampled-data model provides higher accu-
racy.

Theorem 4. Assume that G(s) has relative degree
r > 1, and has no pure imaginary poles or zeros.
Then,

1. For low frequencies, SDR models are more ac-
curate than ASZ models, i.e., when ω → 0,

RSDRk (ω) ≤ RASZk (ω) (28)

where k ∈ {1, 2}.

2. The frequencies at which SDR and ASZ models
have approximately the same relative error are
given by the solutions of the following equation

n∑
i=1

ω2

ω2 + |pi|2
−

m∑
k=1

ω2

ω2 + |σk|2
=
r + 1

2
(29)

The solutions ω` of (29) satisfy

p̌

√
r + 1

2n
≤ ω` ≤

√
(n+m+ 1)p̂2 + σ̌2

r − 1
(30)

where p̌, p̂, σ̌ and σ̂ denote the minimum and
maximum magnitude of the system poles, and
the minimum and maximum magnitude of the
system zeros, respectively.

Proof. See Appendix B.

The previous theorem can be extended to compare
SDR and CSZ models, obtaining the same bounds
that appear in (30). Moreover, the assumptions in
Theorem 4 can be relaxed: If the relative degree
of G(s) is r = 1 then both approximate models,
SDR and ASZ, are the same. On the other hand, if
the continuous-time system includes pure imaginary
poles or zeros, the relative error for both models, SDR
and ASZ, go to zero or infinity at those frequencies,
respectively (see Example 7).

Equation (29) can be numerically solved for any
given system, however, the bounds for the roots es-
tablished in (30) are, from our point of view, more
insightful. Indeed, the bandwidth (30) at which the
SDR and ASZ models have the same relative error
depends only on the poles and zeros of the system,
but is independent of the sampling period. This re-
sult provides a clear guideline to which approximate
models are better to use: If one will use an approxi-
mate model up to the continuous-time system band-
width, then SDR models may provide enough accu-
racy. However, if one requires a model more accurate
for higher frequencies (and, in particular, near the
Nyquist frequency), then the sampled model has to
incorporate sampling zeros, as can be seen from the
maximum relative errors in Theorem 3.

An interesting question at this point is how one
can obtain a model as accurate as SDR models for
low frequencies, but, at the same time, as accurate
as ASZ (or CSZ) models for frequencies close to the
Nyquist frequency π

∆ . In fact, the next result shows
that CTE models provide such desired behavior.

Theorem 5. For a sampling period sufficiently
small, the relative error associated with CTE models
behaves as the relative error corresponding to SDR
models for low frequencies and as the relative error
corresponding to CSZ models near the Nyquist fre-
quency, i.e.,

RCTEk (ω)
ω→0−−−→ RSDRk (ω) (31)

RCTEk (ω)
ω→ π

∆−−−−→ RCSZk (ω) (32)

where k ∈ {1, 2}.
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Figure 1: Relative errors RSDR2 (ω) , RASZ2 (ω) and
RCSZ2 (ω) for two different sampling periods ∆ ∈
{0.1, 0.01} (Example 6).

Proof. See Appendix C.

6 Examples

In this section we present examples to illustrate the
bounds presented in Theorem 4. Additionally, we
analyze the accuracy of DTE and CTE models.

Example 6. Consider G(s) = 2
(s+1)(s+2) . The ESD,

SDR, ASZ and CSZ models are as follow:

GESDd (z) =
b1(∆)z + b0(∆)

(z − e−∆)(z − e−2∆)
(33)

GSDRd (z) =
2

( z−1
∆ + 1)( z−1

∆ + 2)
(34)

GASZd (z) =
(z + 1)

( z−1
∆ + 1)( z−1

∆ + 2)
(35)

GCSZd (z) =
2(z + 1−∆)

( z−1
∆ + 1)( z−1

∆ + 2)(2−∆)
(36)

The relative errors RSDR2 (ω), RASZ2 (ω) and RCSZ2 (ω)
of the approximate models are shown in Figure 1 for
two different sampling periods, ∆ = 0.1 and ∆ =
0.01. The bounds predicted in Theorem 4 are given
by 0.8165 ≤ ω` ≤ 3.4641. Figure 1 shows that the
frequency where relative errors intersect is within the
band given in (6).
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Figure 2: Relative errors RSDR2 (ω) and RCSZ2 (ω) for
different sampling periods ∆ ∈ {0.1, 0.01} (Example
7).

Example 7. We now consider a more complex sys-
tem which includes a slightly damped resonant mode

G(s) =
p1ω

2
n

(s+p1)(s2+2ξωns+ω2
n) (37)

where p1 = 1, ξ = 0.1, ωn = 4. We obtain the
SDR and CSZ models as in the previous example. In
this case the asymptotic sampling zeros are the roots
of B3(z) = z2 + 4z + 1. Note that for this system
GASZd (z) = GCSZd (z).

The relative errors RSDR2 (ω) and RCSZ2 (ω) are
shown in Figure 2, where we see that they inter-
sect at ω` = 4.22. Note that this frequency is very
close to the resonant mode of the system at ωn = 4
and within the band predicted by Theorem 4, i.e.,
0.8165 ≤ ω` ≤ 5.6569.

Example 8. We consider again the continuous-time
system in Example 7 and we compare the associated
SDR and CSZ models with CTE models. In this case,
GCSZd (z) = GASZd (z) and GDTEd (z) = GCTEd (z). Fig-
ure 3 shows that CTE models provide the same rela-
tive error than SDR models for low frequencies. For
higher frequencies, CTE models provide higher ac-
curacy than SDR models, because they include the
asymptotic sampling zeros. Moreover, we see that
CTE models provides the highest accuracy for low and
high frequencies, and it is only slightly outperformed
by CSZ models in a band around ω = 1.
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Figure 3: Relative errors RSDR2 (ω), RCSZ2 (ω) and
RCTE2 (ω), for a sampling period ∆ = 0.01 (Exam-
ple 8).

7 Conclusion

In this paper we have characterized the accuracy of
different approximate sampled-data models for lin-
ear systems in terms of frequency-domain relative er-
ror. We have shown that a simple derivative replace-
ment model using Euler approximation provides a
smaller relative error within the continuous-time sys-
tem bandwidth. However, if one is required to have
a more accurate model for higher frequencies (in par-
ticular, near the Nyquist frequency), then sampling
zeros must be included in the model. Additionally,
the results show that a particular model obtained by
different-order Taylor expansion of the state equa-
tions provides an accurate description for all frequen-
cies.

The insights provided by the relative error anal-
ysis presented in this paper can be taken into ac-
count for the case of approximate sampled data mod-
els for nonlinear systems. For these systems, even
though relative errors in the frequency domain can-
not be analyzed, approximate sampled models can
be readily obtained using Euler, Tustin, or the pro-
posed different-order Taylor expansion. The results
presented here suggest that the latter kind of model
is the best option. This complements the results in
[22] where the accuracy was characterized in terms of
time domain truncation errors.

A Proof of theorem 3

The H∞-norm of Ri1(ω) and Ri2(ω) for SDR, ASZ,
and CSZ models was characterized in [9]. Thus, the
proof only considers the H∞-norm analysis for TDR,
DTE, and CTE models.

A key observation is that, for any fixed frequency

Gid(e
jω∆)

∆→0−−−−→ G(jω) This implies that, for any
fixed ω, the relative errors (26) and (27) go to zero.
Thus, the analysis is restricted to the behavior of the
relative error at the Nyquist frequency ωN = π

∆ ⇔
z = −1. Note that this frequency go to ∞ as the
sampling period ∆ goes to 0.

Let G(s) be the linear system in (1) represented as

G(s) =
sm + bm−1s

m−1 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

(38)

where bm−1 = −
∑m
k=1 σk and an−1 = −

∑n
i=1 pi.

The transfer function (38) can be expanded as

G(s) = 1
sr + Θ 1

sr+1 +O(s−r−2) (39)

where Θ = bm−1 − an−1 =
∑

pi −
∑

σk (40)

The ESD model for an r-th order integrator is given
by the right hand side of (7) [3]. Thus, an expansion
of the sampled model corresponding to (39) is given
by

GESDd (z) =
∆rBr(z)

r!(z − 1)r
+Θ

∆r+1Br+1(z)

(r + 1)!(z − 1)r+1
+O(∆r+2)

(41)
Moreover, G(s) can be expressed in state-space form

ẋ = Ax+Bu (42)

y = Cx (43)

where

A =

(
0n−1×1 In−1

−a0 . . . − an−1

)
, B =

(
0n−1×1

1

)
(44)

C =
(
bo b1 · · · bm−1 1 0 · · · 0

)
(45)

There exists a transformation
(
ξ
η

)
= Φx such that

(42)-(45) is rewritten in the normal form [14]

ξ̇ = Arξ +BrCA
rΦ−1

(
ξ
η

)
+Bru (46)

η̇ = Q21ξ +Q22η (47)
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where

Ar =

(
0r−1×1 Ir−1

0 01×r−1

)
∈ Rr×r, (48)

Br =

(
0r−1×1

1

)
∈ Rr (49)

Q21 =

(
01×r−1 0m−1×r−1

1 0r−1×1

)
∈ Rm×r (50)

Q22 =

(
0m−1×1 Im−1

−b0 −b1 · · · −bm−1

)
∈ Rm×m

(51)

and

Φ =


C
...

CAr−1

Im ~0m×r

 (52)

Note that, comparing (46)-(51) with (22)

Q11ξ +Q12η + u = CArΦ−1
(
ξ
η

)
+ u (53)

Then the DTE model (23) is given by

q ξ = Aqrξ +Bqr [CArΦ−1
(
ξ
η

)
+ u] (54)

q η = ∆Q12ξ + (Im + ∆Q22)η (55)

where

Aqr = eAr∆ =


1 ∆ · · · ∆r−1

(r−1)!

0
. . .

...
...

. . . ∆
0 · · · 0 1

 (56)

Bqr =

∫ ∆

0

eArνBrdν =
(

∆r

r! · · · ∆
)T

(57)

Equations (54) and (55) can be rewritten as

q−1
∆ ξ = Aδrξ +Bδr [CArΦ−1

(
ξ
η

)
+ u] (58)

q−1
∆ η = Q21ξ +Q22η (59)

where

Aδr =
Aqr − I

∆
= Ar +O(∆)

=


0 1 · · · ∆r−2

(r−1)!

...
. . .

. . .
...

...
. . .

. . . 1
0 · · · · · · 0

 (60)

Bδr =
Bqr
∆

= Br +O(∆) =
(

∆r−1

r! · · · 1
)T

(61)

Then, the denominator of the transfer function (25)
associated with the DTE model, is given by

Ẽ(z) = det
(
z−1
∆ −Ad

)
(62)

where, from (58)-(59),

Ad =

(
Aδr 0r×m

0m×r 0m×m

)
+

(
BδrCA

rΦ−1

Q21 Q22

)
(63)

The characteristic polynomial (62) can be expanded
as [5]:

Ẽ(z) = 1
∆n {(z − 1)n − tr(Ad)(z − 1)n−1∆ +O(∆2)}

(64)
Note that, from (46)-(47) ,

ΦAΦ−1 =

(
Ar 0r×m

0m×r 0m×m

)
+

(
BrCA

rΦ−1

Q21 Q22

)
(65)

From (45), (60), (61) and (63), we obtain

Ad =ΦAΦ−1 +O(∆) (66)

⇒ tr(Ad) =− an−1 +O(∆) (67)

Then

Ẽ(z) =
(
z−1
∆

)n(
1 + an−1∆

z−1 +O(∆)
)

(68)

The numerator of (25) can be expressed as

F̃ (z) = Br(r)(z−1)m

r!∆m

(
1 + bm−1∆

z−1 +O(∆2)
)

(69)

Equation (68) and (69) yields the following expansion

GDTEd (z) =
∆rBr(z)

r!(z − 1)r

{
1 + bm−1

∆
z−1 +O(∆2)

1 + an−1
∆
z−1 +O(∆2)

}
(70)

= ∆rBr(z)
r!(z−1)r + Θ∆r+1Br(z)

r!(z−1)r+1 +O(∆r+2) (71)

From (41) and (71), the absolute error between DTE
and ESD models is given by

GESDd −GDTEd = Θ∆r+1{Br+1−(r+1)Br}
(r+1)!(z−1)r+1 +O(∆r+2)

(72)

Then

GESDd −GDTEd

GESDd

= ∆Θ(Br+1−(r+1)Br)
(r−1)(z−1)Br+∆ΘBr+1

+O(∆2) (73)

GESDd −GDTEd

GDTEd

= ∆Θ(Br+1−(r+1)Br)
(r+1)((z−1)Br+∆ΘBr) +O(∆2) (74)
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where Br(z) = Br.
Then, replacing ω = π

∆ (z = −1) in the relative
errors (26) and (27), gives the result for DTE models:

RDTE1 ( π∆ ) =

{
O(∆) r : odd

O(1) r : even
(75)

RDTE2 ( π∆ ) =

{
O(∆) r : odd

∞ r : even
(76)

For the case of the CTE models, we proceed similarly.
When r is an odd number, then GCTEd (z) = GDTEd (z)
and the previous analysis gives the result. When r is
an even number, then CTE models can be expressed
as

GCTEd (z) = z+1+c∆
(z+1)(1+

c∆
2 )
GDTEd (z)

= (1 + c∆
z+1 )(1− 1

2c∆ +O(∆2))GDTEd (z)

= (1− c∆
2

(z−1)
(z+1) +O(∆2))GDTEd (z) (77)

Then, using (71) and noting that c∆ = ∆Θ
r+1 , we obtain

GCTEd (z) = ∆rBr(z)
r!(z−1)r + Θ∆r+1Br(z)

r!(z−1)r+1 +

−Θ ∆r+1Br(z)
2(r+1)!(z+1)(z−1)r−1 +O(∆r+2) (78)

Then taking the limit as z → −1 and using
L’Hopital’s rule for the third term on the right hand
side, we obtain

GCTEd (−1) = Θ
∆r+1B′r(−1)

(r+1)!2r +O(∆r+2) (79)

Evaluating the ESD model in z = −1, we obtain

GESDd (−1) = Θ∆r+1Br+1(−1)
(r+1)!2r+1 +O(∆r+2) (80)

The absolute error between CTE and ESD models is
given by

GESDd (−1)−GCTEd (−1) =

−Θ ∆r+1

(r+1)!2r+1

{
B′r(−1) + Br+1(−1)

2

}
+O(∆r+2)

(81)

From property (6) of the Euler-Fröbenius polynomi-
als, the expression in brackets equal to zero. Thus,

GESDd (−1)−GCTEd (−1) = O(∆r+2) (82)

From (79), (80) and (82) we have that

GESDd (−1)−GCTEd (−1)

GESDd (−1)
= O(∆) (83)

GESDd (−1)−GCTEd (−1)

GCTEd (−1)
= O(∆) (84)

Then, both relative errors (26) and (27) associated
with CTE models (when r is an even number) are of
the order of ∆ at the Nyquist frequency, i.e.

RCTEk ( π∆ ) = O(∆), k ∈ {1, 2} (r : even) (85)

For the case of the TDR model we proceed as follows:

GTDRd (z) = G
(

2
∆
z−1
z+1

)
(86)

From (39) we have that

GTDRd (z) =
(

∆
2
z+1
z−1

)r
+ Θ

(
∆
2
z+1
z−1

)r+1

+O(∆r+2)

(87)

From (41) and (87) we can approximate the absolute
error between ESD and TDR models as

GESDd (z)−GTDRd (z) = ∆r 2rBr(z)−r!(z+1)r

2rr!(z−1)r +O(∆r+1)

(88)
Then we have that

GESDd −GTDRd

GESDd

=
∣∣∣ 2rBr(z)−r!(z+1)r

2rBr(z)

∣∣∣+O(∆) (89)

GESDd −GTDRd

GTDRd

=
∣∣∣ 2rBr(z)−r!(z+1)r

r!(z+1)r

∣∣∣+O(∆) (90)

Evaluating the relative errors associated to TDR
model at the Nyquist frequency, we obtain

RTDR1 ( ω∆ ) =

{
O(1) r : odd

O(1) r : even
(91)

RTDR2 ( ω∆ ) =

{
∞ r : odd

∞ r : even
(92)

This completes the proof.

B Proof of Theorem 4

We first obtain an approximation for ESD, SDR, and
ASZ models. We consider the ESD model given in
(3). This model can be equivalently expressed as in
(6). When ∆ → 0, the terms in the infinite sum
(6) are negligible except for the term associated with
` = 0. Thus, we use the following approximation

GESDd (es∆) ≈(1− e−s∆)
G(s)

s∆
=G(s)

[
1− 1

2s∆ +O(∆2)
]

(93)
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Moreover, if we now examine the other terms in the
infinite sum (6), and we replace G(s) using (1), we
have that

(1− e−s∆)

s∆ + 2πj`

∏m
k=1(s+ 2πj`/∆− σk)∏n
i=1(s+ 2πj`/∆− pi)

= ∆r 1− e−s∆

s∆ + 2πj`

∏m
k=1(2πj`+ ∆(s− σk))∏n
i=1(2πj`+ ∆(s− pi))

= O(∆r+1) (94)

Thus, all such terms are of the order of ∆r+1, and do
not modify the expansion in (93). Now, SDR models
can be expressed as follows

GSDRd (es∆) = G
(
es∆−1

∆

)
= G(s+ s2∆

2 +O(∆2))

(95)

If we now replace G(s) using (1), we obtain

GSDRd (es∆) =

∏m
k=1(s+ 1

2s
2∆ +O(∆2)− σk)∏n

i=1(s+ 1
2s

2∆ +O(∆2)− pi)

= G(s)

{∏m
k=1(1 + 1

2
s2∆
s−σk +O(∆2))∏n

i=1(1 + 1
2
s2∆
s−pi +O(∆2))

}
(96)

We then obtain a Taylor series expansion for the ex-
pression in curly brackets

GSDRd (es∆) = G(s)
{

1 + 1
2s∆ψ(s) +O(∆2)

}
(97)

where ψ(s) =

m∑
k=1

s

s− σk
−

n∑
i=1

s

s− pi
(98)

We now obtain an approximation for the ASZ model.
We see in (18) that this model is obtained including
the asymptotic sampling zeros in the SDR model. A
Taylor series expansion of Br(e

jω∆), around ∆ = 0
is given by

Br(e
s∆) = Br(1) +B′r(1)s∆ +O(s2∆2)

= r! + r!(r−1)
2 s∆ +O(s2∆2) (99)

where we have used the fact that Br(1) = r! and
Lemma 1. Using (18), (97), and (99), we obtain

GASZd (es∆) = G(s)
{

1 + 1
2 [ψ(s) + r − 1] s∆ +O(∆2)

}
(100)

From (97) and (100), the relative errors are expanded
as

RSDR1 (ω) = 1
2 |ω∆(1 + ψ(jω))|+O(ω2∆2) (101)

RASZ1 (ω) = 1
2 |ω∆(r + ψ(jω))|+O(ω2∆2) (102)

RSDR2 (ω) = 1
2 |ω∆(1 + ψ(jω))|+O(ω2∆2) (103)

RASZ2 (ω) = 1
2 |ω∆(r + ψ(jω))|+O(ω2∆2) (104)

Then as ω → 0, the terms O(ω2∆2) can be ne-
glected for any sampling period ∆. Then, comparing
(101) with (102), and (103) with (104) gives part 1)
of the theorem

To show part 2) we consider the condition

RSDRk (ω) = RASZk (ω) (105)

for k ∈ {1, 2}. Using (101)-(104), it can be shown
that (105) leads (for k = 1 and for k = 2}) to∣∣∣ψ(jω) + r

∣∣∣ =
∣∣∣ψ(jω) + 1

∣∣∣+O(∆) (106)

If we neglect terms of the order of ∆ in the last equa-
tion and we expand the magnitude in real an imagi-
nary parts[

Re
{
ψ(jω) + r

}]2
=
[
Re
{
ψ(jω) + 1

}]2
(107)

Assuming r > 1 and replacing ψ(s) from (98) yields

Re
{
ψ(jω)

}
= (108)

=

m∑
k=1

ω (ω − Im{σk})
ω2 + |σk|2

−
n∑
i=1

ω (ω − Im{pi})
ω2 + |pi|2

= −r + 1

2
(109)

Noting that complex poles and zeros appear in com-
plex conjugate pairs, we obtain equation (29).

Now we find upper and lower bounds for the roots
of

f(ω) =

n∑
i=1

ω2

ω2 + |pi|2
−

m∑
k=1

ω2

ω2 + |σk|2
− r + 1

2
(110)

We find f̌(ω) and f̂(ω) that minorize and majorize
f(ω), respectively, i.e.

f̌(ω) ≤ f(ω) ≤ f̂(ω) (111)

for all ω > 0, such that f̂(0) < 0 and limω→∞ f̌(ω) >
0, to ensure that the roots of f(ω) lie in the interval
between the smallest positive root of f̌(ω) and the

largest positive root of f̂(ω). We choose

f̌(ω) = n ω2

ω2+p̂2 −m ω2

ω2+σ̌2 − r+1
2 (112)

The positive real root of this equation is ω = ω1,
where ω1 is given in equation (112) at the top of the
page. This is an upper bound for the roots of f(ω)
in (110) . The frequency ω1 can be bounded as

ω1 ≤ ω2 =

√
(n+m+1)p̂2+σ̌2

r−1 (114)
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ω1 =

√
p̂2(1 + n+m)− σ̌2(m+ n− 1) +

√
σ̌4(n+m− 1)2 + 2(n2 − 6nm+m2 − 1)σ̌2p̂2 + (1 + n+m)2p̂4

2(r − 1)
(112)

where ω2 its obtained adding the term

4σ̌4(n+m) + 4(4nm+ n+m+ 1)σ̌2p̂2 (115)

to the inner square root term in ω1 in (112).
On the other hand, a majorizing function is given

by

f̂(ω) = nω
2

p̌2 − r+1
2 (116)

Note that f̂(0) = − r+1
2 < 0, and thus, the lower

bound for the roots of f(ω) is given by the only pos-

itive root of f̂(ω), i.e.

ω = ω3 = p̌
√

r+1
2n (117)

Thus, the roots of f(ω) are bounded by (117) and
(114).

C Proof of Theorem 5

To show that CTE relative errors behave as CSZ rel-
atives errors, an approximation of ASZ model is first
obtained. From (18) and (39) we have that

GASZd (z) =
∆rBr(z)

r!(z − 1)r
+ Θ

∆r+1Br(z)

r!(z − 1)r+1
+O(∆r+2)

(118)
From (118) and (19), and if r is an odd number, then

GCSZd = GASZd =
∆rBr(z)

r!(z − 1)r
+Θ

∆r+1Br(z)

r!(z − 1)r+1
+O(∆r+2)

(119)
When r is even number, the CSZ model takes the
form

GCSZd (z) = K(z)
K(1)G

ASZ
d (z) = 2(z+1+c∆)

(z+1)(2+c∆)G
ASZ
d (z)

(120)
Expanding as in (77)

GCSZd (z) = (1− c∆
2

(z−1)
(z+1) +O(∆2))GASZd (z) (121)

Replacing (118) into (121), and recalling that c∆ =
∆Θ
r+1 , we obtain

GCSZd (z) = ∆rBr(z)
r!(z−1)r + Θ∆r+1Br(z)

r!(z−1)r+1 +

−Θ ∆r+1Br(z)
2(r+1)!(z+1)(z−1)r−1 +O(∆r+2) (122)

Comparing (78) and (122) it can be seen that CSZ
and CTE models are equal up to an error of the order
of ∆r+2. From the relative error definitions (26)-(27),
and after some manipulations, we obtain

|RCSZk −RCTEk | = O(∆2) (k ∈ {1, 2}) (123)

Moreover, from Theorem 3, Rik = O(∆), for i ∈
{CSZ,CTE} and k = {1, 2}. Thus, in (123) and
for a small ∆, near the Nyquist frequency RCSZk =
RCTEk . This corresponds to (32).

For low frequencies, CTE models can be expanded
replacing z−1

∆ = s+O(s2∆) into (62). This yields

Ẽ(es∆) = det(sI −Ad +O(s2∆))

= det(sI −A) det(I + (A−Ad)(s−A)−1+O(s2∆))

= E(s) det(I − (A−Ad)(A−1 + sA−2 + · · · ) +O(s2∆))

= E(s)[det(AdA
−1 − s(A−Ad)A−2) +O(s2∆))]

= E(s)[det(AdA
−1)

− tr((AdA
−1)A(A−Ad)A−2)s+O(s2∆)]

(124)

where (·)A denotes the adjugate matrix [5]. Simpli-
fying the second term of the right side of (124)

tr((AdA
−1)A(A−Ad)A−2)

= det(A−1)tr(AAd )− det(A−1Ad)tr(A
−1) (125)

from (44) we have

A−1 =


−a1

a0
· · · −an−1

a0
− 1
a0

1 0 . . . 0
. . .

. . .
...

1 0

 (126)

Then from the matrix (126) we see that

det(A) = (−1)na0, tr(A−1) = −a1

a0
(127)

We now focus on obtaining the determinant of Ad.
We denote

CArΦ−1 =
(
d1 d2 · · · dn−1 dn

)
(128)
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Thus,

det(Ad) = (129)∣∣∣∣∣∣∣∣∣∣∣∣

∆r−1

r! d1 · · · ∆r−2

(r−1)!
+ ∆r−1

r! dr
∆r−1

r! dr+1 · · · ∆r−1

r! dn

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∆
2 d1 · · · ∆

2 dr + 1 dr+1 · · · dn
d1 · · · dr dr+1 · · · dn

Q21 Q22

∣∣∣∣∣∣∣∣∣∣∣∣
(130)

Using the multi-linearity properties of determi-
nants, it can be shown that

det(Ad) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · ∆r−2

(r−1)!
0 · · · 0

. . .
...

...
. . .

...
1

d1 · · · dr dr+1 · · · dn
Q21 Q22

∣∣∣∣∣∣∣∣∣∣∣
(131)

We then compute the determinant recursively from
the first row down to the (m− 1)-th row of Q22 (see
equation (51)), i.e.,

det(Ad) = (−1)n−r−1

∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · ∆r−2

(r−1)! 0

. . .
...

...
1 0

d1 · · · dr dr+1

1 0 · · · 0 −b0

∣∣∣∣∣∣∣∣∣∣∣
(132)

We then compute the determinant recursively
starting from the (r − 1)-th to the first row, i.e.,

det(Ad) = (−1)n
∣∣∣∣d1 dr+1

1 −b0

∣∣∣∣
= (−1)n−1(b0d1 + dr+1) (133)

To obtain d1 and dr+1, from (52), we have that

Φ~e1 = b0~e1 + ~er+1 (134)

Then, multiplying (134) by CArΦ−1, we obtain

CAr~e1 = b0CA
rΦ−1~e1 + CArΦ−1~er+1 (135)

Notice that

CAr =



−a0

...
−an−r−1

b0 − an−r
...

bm−1 − an−1



T

(136)

Thus, using (128) and (136) into (135), we have

b0d1 + dr+1 = −a0 (137)

Replacing into (133), it follows that

det(Ad) = (−1)na0 (138)

The last equation will be used into (125), where the
only term that we need is tr(AAd ), which corresponds
to the sum of the cofactors of Ad on the diagonal.
We denote as ci the cofactor corresponding to the
i-th row and i-th column of Ad matrix. Then,

tr(AAd ) =

n∑
i=1

ci (139)

We compute the cofactors following a similar pro-
cedure as before when we obtained det(Ad). This
yields, for i = 1,

c1 = (−1)n−r−1

∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · ∆r−2

(r−1)!
0

...
. . .

...
...

1 0
d2 · · · · · · dr dr+1

0 · · · · · · 0 −b0

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

∣∣∣∣d2 dr+1

0 −b0

∣∣∣∣
= (−1)nd2b0 (140)

and, for i ∈ {2, . . . , r},

ci = (−1)n−r−1×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · ∆i−2

(i−1)!
0 ∆i

(i+1)!
· · · ∆r−2

(r−1)!
0

. . .
...

...
...

...

0 0 ∆
2

· · · ∆r−i

(r−i+1)!

...

0 · · · · · · 1 0 · · · 0 0

0 0 · · · ∆r−i−2

(r−i−1)!

...
. . .

...

d1 · · · di−1 0 di+1 · · · dr
...

1 0 · · · 0 · · · 0 −b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1 ∆

2

∣∣∣∣d1 dr+1

1 −b0

∣∣∣∣
= ∆

2 (−1)n−1a0 i ∈ {2, . . . , r} (141)

where the last equation follows from (137).

For i = r + 1, the corresponding cofactor is given
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by

cr+1 = (−1)n−r−1

∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · ∆r−2

(r−1)!
0

. . .
...

...
1 0

d1 · · · · · · dr dr+2

1 0 · · · 0 −b1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

∣∣∣∣d1 dr+2

1 −b1

∣∣∣∣
= (−1)n(b1d1 + dr+2) (142)

Finally, for i ∈ {r + 2, . . . n}, we have that

ci =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ 0

0 1

.
.
. 0

.
.
. 1

.

.

.
0 · · · 0 0

0 · · · 1 0 · · · 0

0 1

.

.

.

.
.
.

.
.
.

0 1
∗ −b0 · · · · · · 0 · · · · · · −bm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(143)

and we see that the (i − 1)-th row is the zero row
vector, therefore

ci = 0, i ∈ {r + 2, . . . , n} (144)

We now need to obtain d2 and dr+2. From (52),
we see that

Φ~e2 = b1~e1 + b0~e2 + ~er+2 (145)

Then, multipliying (145) by CArΦ−1, and using
(136), we obtain

CAr~e2 = b1d1 + b0d2 + dr+2 = −a1 (146)

Therefore, from (140), (142) and (146) we have

c1 + cr+1 = (−1)n−1a1 (147)

From (126), (141), (144) and (147), we obtain

det(A−1)tr(AAd ) = −a1

a0
− (r−1)∆

2 (148)

Thus,

det(A−1)tr(AAd )− det(A−1Ad)tr(A
−1) = − (r−1)∆

2

Finally, replacing into (124), we obtain

Ẽ(es∆) = E(s){1 + (r−1)∆
2 s+O(s2∆)} (149)

From (99) and (149), for low frequencies the following
expansion is obtained

GDTEd (es∆) = G(s)

{
1 + (r−1)

2 s∆2 +O(s2∆)

1 + (r−1)
2 s∆2 +O(s2∆)

}
= G(s){1 +O(s2∆)} (150)

Then, when the relative degree r is an odd number,

GCTEd (es∆) = GDTEd (es∆) = G(s){1 +O(s2∆)}
(151)

On the other hand, when r is an even number, the
correction term (20) has to be included, obtaining a
similar expansion:

GCTEd (es∆) =
K(es∆)

K(1)
GDTEd (es∆)

=
1 + c∆

es∆+1

1 + c∆
2

GDTEd (es∆)

= [1 +O(s∆2)]GDTEd (es∆)

= G(s){1 +O(s∆2 + s2∆)} (152)

Equations (93) and (151) (or (152)) yield

GESDd (es∆)−GCTEd (es∆)

GESDd (es∆)
= ∆

2 s+O(s2∆ + s∆2) (153)

GESDd (es∆)−GCTEd (es∆)

GCTEd (es∆)
= ∆

2 s+O(s2∆ + s∆2) (154)

Thus, the relative errors (26)-(27) can be expanded
as

RCTEk (ω) = ∆
2 ω+O(ω2∆+ω∆2), k ∈ {1, 2} (155)

Note that ψ(jω) in (98) is of the order of ω. Then,
the expansion of the relative errors associated to SDR
models ((101) and (103)) can be expressed as

RSDRk (ω) = ∆
2 ω+O(ω2∆+ω∆2)), k ∈ {1, 2} (156)

From (155) and (156) the error between the relative
errors associated with CTE and CSZ models satisfy

RCTEk (ω)−RCSZk (ω) = O(ω2∆ + ω∆2), k ∈ {1, 2}
(157)

For a sampling period sufficiently small, and for
low frequencies, the terms of order ω2 + ω∆ go to
zero, and thus, the relative errors associated to CTE
and CSZ models are approximately the same. This
shows (31).
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