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Abstract: This paper studies optimal control problems associated to networked systems.
In particular, we focus on a case where a multiple-input multiple-output (MIMO) plant is
controlled over a channel subject to multiple signal-to-noise ratio (SNR) constraints. For this
setup, we establish necessary and sufficient condition for the existence of static state-feedback
controllers that stabilize the plant in a mean square sense, while satisfying the channel SNR
constraints. This characterization is given in terms of a convex optimization problem involving
linear matrix inequalities (LMIs). We also provide a characterization of the best achievable
performance in the setup considered, as well as for the state-feedback controller achieving
that performance. As an application of our results, we study a networked situation where
communication takes place over two erasures channels. To do so, we exploit a recently developed
equivalence between networked control problems over erasure channels and SNR constrained
optimal control problems. Finally, numerical examples are presented to illustrate the main
results.
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1. INTRODUCTION

Networked control systems (NCSs) are control systems
closed over constrained communication channels. The
study of such systems has received much attention in
the recent literature (see, e.g., Antsaklis and Baillieul
(2007) and the references therein). Most of the work has
focused on data-rate constraints (Nair et al. (2007)), data
dropouts (Schenato et al. (2007)), random delays (Zhang
et al. (2005)), and signal-to-noise ratio (SNR) constraints
(Braslavsky et al. (2007); Rojas et al. (2008); Silva et al.
(2010)). In this paper, we focus on MIMO plants con-
trolled over an arbitrary number of (possible MIMO)
additive noise channels subject to SNR constraints.

As a first step in the study of SNR constrained systems,
Braslavsky et al. (2007) considered the stabilization of a
single-input single-output plant closed over a scalar power
constrained additive noise channel. The main results in
Braslavsky et al. (2007) is a closed form characterization
of the minimal channel SNR compatible with mean square
stability. However, the results in Braslavsky et al. (2007)
do not provide performance guarantees. Rojas et al. (2008)
and Freudenberg et al. (2010), considered performance
and robustness and related issues, as well as the problem
of disturbance attenuation over SNR constrained additive
noise channels. Further work was carried out by Silva
et al. (2010), where a general LTI control architecture
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involving one scalar SNR constrained channel was studied.
The works referred to above provide several insights,
but consider situations where only one scalar channel is
present. Thus the problem of control system design for
MIMO plants controlled over multiple SNR constrained
channels is still open.

The recent paper by Pulgar et al. (2010) addresses the
problem of optimal static state-feedback control design for
MIMO LTI plants controlled over two SNR constrained
channels. To that end, Pulgar et al. (2010) first showed
that the corresponding design problem is equivalent to the
optimal design of mode-independent static state-feedback
controllers for (a class of) Markov jump linear systems
(MJLSs; Costa et al. (2005)). Unfortunately, the results
available in MJLS theory do not provide a solution to
that problem. Indeed, most results related to the optimal
control of MJLSs focus on mode-dependent controllers,
where it is assumed that the state of the underlying
Markov chain is perfectly known at any time instant, and
without delay (Costa et al. (2005); Geromel et al. (2009);
Xiong and Lam (2007)). Results for the mode indepen-
dent case are presented in Shu et al. (2010) and do Val
et al. (2002). Shu et al. (2010) focus on stabilization using
output feedback controllers, whereas do Val et al. (2002)
present sufficient conditions for the existence of stabilizing
state-feedback controllers, and provide an upper bound
on the best achievable performance, when only partial
information on the Markov chain state is available. By
using the results in do Val et al. (2002), Pulgar et al.
(2010) established an upper bound on the best achievable



performance in the considered two channel control archi-
tecture, and also established sufficient conditions for the
existence of stabilizing controllers.

As a first contribution of this paper, we provide a method-
ology to optimally design static state-feedback controllers
for MIMO systems subject to multiple SNR constraints.
The approach is based upon LMIs (see, e.g, Boyd et al.
(1994)), and provides both necessary and sufficient con-
ditions for the existence of optimal controllers of the
considered class. By exploiting these results, and using
the equivalence unveiled by Pulgar et al. (2010), we also
solve an optimal static state-feedback control problem for
NCSs closed over two analog erasure channels.

An interesting by-product of our results, and what we be-
lieve is a second contribution of this work, is the solution of
a mode-independent optimal static state-feedback control
problem for a restricted class of MJLS.

The remainder of this paper is organized as follows:
Section 2 describes the problem setup. Section 3 presents
the first contribution of this paper. Section 4 shows an
application of our results to the solution to a problem left
open by Pulgar et al. (2010) which involved NCSs closed
over unreliable channels. Section 5 presents numerical
examples, and conclusions are drawn in Section 6.

Notation: R and N refer to the real and natural numbers,
respectively. N0 , N ∪ {0} and R

+ , {x ∈ R : 0 <
x < ∞}.P {∗} stands for the probability of (∗) and E {∗}
denotes the expectation of (∗). Given a matrix W , WT

and WH denote its transpose and conjugate transpose,
respectively. 0n×m denotes the n × m zero matrix, In

denotes the n × n identity matrix, and 0n , 0 In. The
notation diag {x1, · · · , xn}, or simply diag {xi}, refers to
a block diagonal matrix with diagonal blocks given by xi.
If x is a wide sense stationary (wss) (or asymptotically
wss) process, then Px denotes its covariance matrix (or

stationary covariance matrix) and σ2
x , trace {Px} its

variance (or stationary variance). We say that a random
variable (process) is a second order one if and only if it
has finite mean and finite second order moments for all
time instants k ∈ N0 (and also when k → ∞). We use ρ
for the forward shift operator.

2. PROBLEM SETUP

In this paper we focus on the NCS of Fig. 1, where G
is a MIMO LTI system whose state x is available for
measurement, K is a static state-feedback controller, u
is the controller output, d is a disturbance, and z is a
signal that reflects closed loop performance. The NCS of
Fig. 1 also comprises a possibly multi-input multi-output
additive noise channel, with input v, output w, and noise
q.

We assume that G has the state space description
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Fig. 1. Networked control system closed over an SNR
constrained additive white noise channel.

with k ∈ N0, and where x(k) ∈ R
n, x(0) = x0, u(k) ∈ R

r,
d(k) ∈ R

p, w(k) ∈ R
`, z(k) ∈ R

s, and v(k) ∈ R
`.

We will work under the following assumptions:

Assumption 1.

a) x0 is a second order random variable.
b) The disturbance d is a zero mean second order white

noise sequence, uncorrelated with x0, and with covari-
ance matrix Pd , ΩdΩ

H
d > 0.

c) Dwv has a strictly lower (or upper) triangular struc-
ture. 2

We note that Assumption 1c) guarantees that the system
of Fig. 1 is well posed 1 for any choice of the controller K.

The channel of Fig. 1 is formally defined next:

Definition 1. The channel of Fig. 1, with input v and
output w, is an SNR constrained additive white noise
channel if and only if, ∀k ∈ N0, ∀v(k) ∈ R

`,

w(k) = q(k) + v(k), q(k) ,
[

q1(k)T · · · qc(k)T
]T

, (2)

where qi(k) ∈ R
ni , i ∈ {1, . . . , c}, ` = n1 + · · · + nc, qi

is a zero mean white noise sequence uncorrelated with
(x0, d), and qi is not correlated with qj ∀i 6= j. In
addition, the covariance matrix of qi, i.e., Pqi

, is a design
variable that can be chosen within the class of all ni × ni

positive semidefinite matrices subject to the stationary
SNR constraint

Pvi
≤ ΓiPqi

, (3)

where Pvi
is the stationary variance of vi and Γi ∈ R

+ is
the maximum admissible SNR for channel i. 2

Remark 1. Given Definition 1, Pq is block diagonal with
diagonal blocks Pqi

. However, each Pqi
may be non diag-

onal. 2

The partition of q in Definition 1 induces a corresponding

partition on w and v, namely w ,
[

wT
1 · · · wT

c

]T
and

v ,
[

vT
1 · · · vT

c

]T
, with wi(k), vi(k) ∈ R

ni . This also
implies a partition on the system matrices. Define

Cvi
= ηiCv , Duvi

= ηiDuv and Ddvi
= ηiDdv, (4)

where, ∀i ∈ {1, . . . , c},
ηi ,

[

0ni×(n1+···+ni−1) Ini
0ni×(ni+1+···+nc)

]

. (5)

As discussed by Silva et al. (2010), SNR constrained addi-
tive white noise channels arise when standard input power
constrained additive white (Gaussian) noise channels (see,

1 In the standard sense defined in, e.g., Zhou et al. (1996)



e.g., Braslavsky et al. (2007); Cover and Thomas (2006))
are used with pre- and post-scaling factors. Choosing such
scaling factors amounts to choosing the variance of the
equivalent noise q. The ratio between the maximum ad-
missible channel input power and the underlying channel
noise variance defines the maximum admissible SNR of
the equivalent SNR constrained channel.

As foreshadowed before, we are interested in static state-
feedback control laws. Our aim is to design such con-
trol law so as to minimize the stationary variance of
the controlled output z, subject to the stationary SNR
constraints imposed by the channel (see (3)). We can thus
define the problem of interest as follows:

Problem 1. Consider the NCS of Fig. 1, where G has
the realization in (1), Assumption 1 holds, and the link
between v and w is an SNR constrained additive white
noise channel. Find

[

σ2
z

]

Γ
, inf

K∈S, 0≤Pqi
<∞

Pvi
≤ΓiPqi

σ2
z , (6)

where i ∈ {1, . . . , c}, Γ , {Γ1, . . . , Γc}, σ2
z is the station-

ary variance of z, and

S ,
{

K ∈ R
m×n : the closed loop of Fig. 1

is internally stable} . 2

In Problem 1, the notation
[

σ2
z

]

Γ
is used to emphasize the

fact that σ2
z depends on the maximum admissible channel

SNRs Γ1, · · · , Γc.

3. OPTIMAL DESIGN SUBJECT TO SNR
CONSTRAINTS

In this section we provide a solution to Problem 1. To do
so, we use results from the literature on control system
design subject to upper bounds on the state covariance
(see Skelton et al. (1997)).

When there is no feedback from x to u, a state space
representation of the system of Fig. 1 is given by

x(k + 1) = Apx(k) + Bpu(k) + Dpd̄(k), x(0) = x0 , (7a)

z(k) = Cpx(k) + Bzu(k) + Dzd̄(k), (7b)

where

Ap , A + Bw∆Cv, Bp , Bu + Bw∆Duv,

Dp ,
[

Dpd
Dpq

]

, Dpd
, Bd + Bw∆Ddv ,

Dpq
, Bw∆ , Cp , Cz + Dwz∆Cv ,

Bz , Duz + Dwz∆Duv , Dz ,
[

Dzd
Dzq

]

,

Dzd
, Ddz + Dwz∆Ddv, Dzq

, Dwz∆,

∆ , (In×n − Dwv)
−1

,

and
d̄(k) , diag {d(k), q(k)} .

The closed loop system that arises when the static state-
feedback control law

u(k) = Kx(k), K ∈ R
m×n, (8)

is used to control the system described by (7) can be
represented as

x(k + 1) = Aclx(k) + Bcld̄(k), x(0) = x0 , (9a)

z(k) = Cclx(k) + Dcld̄(k), (9b)

where

Acl , Ap + BpK, Bcl , Dp, (10a)

Ccl , Cp + ByK, Dcl , Dy. (10b)

Lemma 1. Consider the discrete time LTI system in (9)
with xo and d satisfying Assumption 1a)-b), and q as in
Definition 1. If a positive semidefinite matrix Λ is given,
then the following statements are equivalent:

a) The system in (9) is asymptotically stable and the
stationary covariance matrix of the output z is upper
bounded by Λ, i.e.,

lim
k→∞

E
{

z(k)z(k)T
}

< Λ.

b) There exists X > 0 such that

X > AclXAT
cl + BclPd̄B

T
cl , (11a)

Λ > CclXCT
cl + DclPd̄D

T
cl , (11b)

where Pd̄ , diag {Pd, Pq}.

Proof. The result follows by using Lemma 6.1.2 in Skel-
ton et al. (1997). �

Lemma 1 allows one to characterizes all stabilizing LTI
controllers that achieve a stationary output variance
bounded from above by a given positive semidefinite ma-
trix. With the help of this result, we are now in a position
to state the main result of this section:

Theorem 1. Consider Problem 1. Define the following
optimization problem in the matrix variables Λ, X , Z and
Pq (of appropriate dimensions):

Find : γ , inf trace{Λ} , (12)

subject to:







Λ CpX + BzZ Dzd
Pd Dzq

Pq

? X 0 0
? ? Pd 0
? ? ? Pq






> 0 , (13)







X ApX + BpZ Dpd
Pd Dpq

Pq

? X 0 0
? ? Pd 0
? ? ? Pq






> 0 ,

(14)




ΓiηiPqη
T
i Cvi

X + Duvi
Z Ddvi

Pd

? X 0
? ? Pd



 ≥ 0 ,

(15)

where i ∈ {1, . . . , c}, ? correspond to entries that can be
inferred by symmetry, and all the matrices involved are
defined in (4), (5) and immediately after (7). Then:

(1) There exists a static state-feedback gain K ∈ S
and noise variances Pqi

, i ∈ {1, . . . , c}, satisfying
0 ≤ Pqi

< ∞ and Pvi
≤ ΓiPqi

, if and only if the
LMIs in (13)-(15) are feasible.

(2) If the optimization problem defined by (12)-(15) is
feasible, then

[

σ2
z

]

Γ
= γ. Moreover, if (Zo, Xo, P

o
q )

are the corresponding optimal values of (Z, X, Pq),

then the choice of parameters K = Ko , ZoX
−1
o

and Pq = P o
q guarantees that the closed loop system

of Fig. 1 is internally stable, that the SNR constraints
Pvi

≤ ΓiPqi
are satisfied ∀i ∈ {1, · · · , c}, and that

σ2
z = γ.



Proof. By considering the definitions of Acl, Bcl, Ccl, Dcl

in (10), the inequalities (11) can be written in our case as

X > (Ap + BpK)X (Ap + BpK)
T

+ DpPd̄D
T
p , (16)

Λ > (Cp + BzK)X (Cp + BzK)
T

+ DzPd̄D
T
z . (17)

Using Schur complement (see, e.g., Boyd et al. (1994)),
(16) can be written as





X Ap + BpK Dp

? X−1 0
? ? P−1

d̄



 > 0 (18)

Define T , diag {I, X, Pd̄} where Pd̄ , diag {Pd, Pq}.
Then, (18) becomes equivalent to

T





X Ap + BpK Dp

? X−1 0
? ? P−1

d̄



T T > 0

⇐⇒
[

X Ap + BpKX DpPd̄

? X 0
? ? Pd̄

]

> 0. (19)

Considering the definition of Dp in (7) we have that (19)
is equivalent to







X ApX + BpKX Dpd
Pd Dpq

Pq

? X 0 0
? ? Pd 0
? ? ? Pq






> 0. (20)

Defining
Z , KX, (21)

and using this definition in (20), we get (14).

Similarly, (13) can be obtained from (17).

We can now state an optimization problem on the set of
matrix variables X and Z where we aim to minimize the
trace of Λ subject to (13) and (14), i.e.,

inf trace {Λ} , (22)

subject to (13) , (14)

where the functional corresponds to an upper bound on
the stationary variance of z (Lemma 1). However, this
problem does not consider the SNR constraints imposed
by the channel. These constraints (i.e., Pvi

≤ ΓiPqi
,

∀i ∈ {1, . . . , c}) can be written as a function of the
realization of the G (see (1)) and the controller K as

ΓiηiPqη
T
i ≥ ηi (Cv + DuvK)X (Cv + DuvK)T

ηT
i

+ ηiDdvPdD
T
dvη

T
i ,
(23)

where ηi has been defined in (5).

Using the procedure employed to obtain (13) and (14),
one can rewrite (23) as in (15).

Adding the inequalities defined by (15) for every i to the
optimization problem in (22), we complete the proof. �

Theorem 1 provides a solution to Problem 1 in terms of the
solution to a convex optimization problem subject to LMI
constraints that, as such, can be solved by using standard
numerical algorithms (Boyd et al. (1994); Grant and Boyd
(2010)). A key feature of the problem at hand is that
the decision variables include not only the static state-
feedback controller K, but also a number of unknown

Ḡ(ρ)

K

d

u

channel

θ

x̄

z̄

wθ vθ

Fig. 2. NCS closed over a two-block erasure channel.

covariance matrices Pqi
. Thus, the solution to Problem 1

presented in Theorem 1 required a (slight) modification
of the standard procedures for writing optimal control
problems in terms of LMIs.

It is worth noting that the feasibility of (13)-(15) is not
only sufficient, but also necessary for the existence of
a stabilizing controller K and of noise covariances Pqi

satisfying the channel SNR constraints. Hence, one can
use (13)-(15) to numerically characterize the set of all
channel SNRs Γi that allow one to stabilize, by means
of a static state-feedback controller, a given MIMO plant
using multiple SNR constrained channels. (In the single
scalar channel case, Braslavsky et al. (2007) and Silva
et al. (2010) provide closed form characterizations for
the minimal SNR compatible with stability for various
networked architectures.)

4. AN APPLICATION: OPTIMAL CONTROL OVER
UNRELIABLE CHANNELS

In this section, we use the results of Section 3 to solve an
optimal control problem for NCSs closed over unreliable
channels. In particular, we focus on the setup considered
by Pulgar et al. (2010), which has been reproduced in
Fig. 2. In that figure, all symbols with no bars are as
defined before, Ḡ has the state space description
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, (24)

where x̄ is the state, x̄(0) = x̄o, z̄ is an output, and the
link between vθ and wθ is given by a two-block erasure
channel:

Definition 2. The channel in Fig. 2, with input vθ and
output wθ, is a two-block erasure channel if and only if,
∀k ∈ N0, ∀vθ(k) ∈ R

`,

wθ(k) = θ(k)vθ(k), (25)

where

θ(k) , diag {θ1(k)In1
, θ2(k)In2

} , (26)

θi(k) ∈ {0, 1}, ` = n1 + n2, θi is a sequence of i.i.d.
Bernoulli random variables such that P {θi(k) = 1} = pi,
with 0 < pi < 1, θ1 is independent of θ2, and θi is
independent of (x̄0, d). 2

Remark 2. In order to directly use the results in Pulgar
et al. (2010), we assume that Ḡ is such that there exists no
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Fig. 3. Auxiliary NCS where the erasure channel has been
replaced by a gain and an SNR constrained additive
white noise channel.

feedthrough between (d, wθ) and vθ, and between d and
z̄. However, it is straightforward to extend the following
results to more general cases. 2

For the situation described above, we are interested in
finding the state-feedback gain K that minimizes the
stationary variance of the controlled output z̄:

Problem 2. Consider the NCS in Fig. 2, where Ḡ has
the realization in (24), x̄o is a second order random
variable, the disturbance d is as in Assumption 1b) and is
uncorrelated with x̄o, and the link between vθ and wθ is
a two-block erasure channel. Find

[

σ2
z̄

]

p
, inf

K∈SM

σ2
z̄ , (27)

where σ2
z̄ is the stationary variance of z̄, p , {p1, p2}, and

SM ,
{

K ∈ R
m×n : the closed loop of Fig. 2

is stable in the mean square sense. 2
}

. 2

By exploiting MJLSs theory (see do Val et al. (2002)
and Costa et al. (2005)), Pulgar et al. (2010) provided
a sufficient condition for the existence of K ∈ SM ,
and an upper bound on the best achievable performance
[

σ2
z̄

]

p
. If a solution to the problem of optimally designing

mode-independent state-feedback controllers for MJLSs
were available, then a characterization of

[

σ2
z̄

]

p
could be

readily obtained by proceeding as in Pulgar et al. (2010).
However, to the best of our knowledge, that problem is
still open in the MJLS literature.

We will now show how to use the results of Section 3 to
solve Problem 2. To that end, we start by considering the
auxiliary NCS of Figure 3, where the two-block erasure
channel has been replaced by a matrix gain

M , diag {p1In1
, p2In2

} , (28)

and an SNR constrained additive noise channel with c = 2
and

Γ1 =
p1

1 − p1
, Γ2 =

p2

1 − p2
. (29)

Note that the LTI system inside the uppermost dashed
box in Figure 3 plays the role of G in Figure 1.

For the sake of clarity, we will henceforth use z̄M and z̄L

to refer to the signal z̄ in the switched system of Figure
2, and in the LTI system of Figure 3, respectively.

2 See, e.g., Costa et al. (2005).

Theorem 2. Consider Problem 2. Also consider, under
the same assumptions as those of Problem 2, the NCS of
Figure 3, where M is as in (28) and the link between v
and w is an SNR constrained additive noise channel with
c = 2 and SNRs given by (29). Then,

[

σ2
z̄M

]

p
= inf

K∈S, 0≤Pqi
<∞

Pvi
=ΓiPqi

σ2
z̄L . (30)

where S is the set of all static gains K that make the LTI
system of Fig. 3 internally stable.

Moreover, the static state-feedback controller K ∈ S that
solves the right-hand side optimization problem in (30) is
also the controller K ∈ SM that solves Problem 2.

Proof. Immediate from Theorem 2 and Corollaries 2 and
3 in Pulgar et al. (2010). �

Theorem 2 states that solving Problem 2 is, essentially,
equivalent to solving Problem 1 for a specific choice for
the LTI system G, provided that the SNR constraints
of Problem 1 are active at the optimum. By exploiting
Theorem 2, the following characterization of the solution
to Problem 2 becomes immediate:

Corollary 1. Consider Problem 2. Define the following
optimization problem in the matrix variables Λ, X , Z and
Pq (of appropriate dimensions):

Find : γ , inf trace{Λ} (31)

subject to:





Λ C̄pX + B̄zZ D̄wzPq

? X 0
? ? Pq



 > 0 , (32)







X ĀpX + B̄pZ B̄dPd B̄wPq

? X 0 0
? ? Pd 0
? ? ? Pq






> 0 , (33)

[

Γ1η1Pqη
T
1 C̄v1

X + D̄uv1
Z

? X

]

≥ 0 , (34)

[

Γ2η2Pqη
T
2 C̄v2

X + D̄uv2
Z

? X

]

≥ 0 , (35)

where ? correspond to entries that can be inferred by
symmetry, and the remaining matrices are defined in
terms of the state space description of Ḡ (see (24)) as
follows:

Āp , Ā + B̄wC̄v , B̄p , B̄u + B̄wD̄uv ,

C̄p , C̄z + D̄wzC̄v , B̄z , D̄uz + D̄wzD̄uv ,

C̄vi
, ηiC̄v , D̄uvi

, ηiD̄uv ,

where, ηi is as in (5).

Then:

(1) There exists a static state-feedback gain K ∈ SM

if and only if the LMIs in (32)-(35) are feasible, and
the optimal values of (X, Z, Pq), say (Xo, Zo, P

o
q ), are

such that, ∀i ∈ {1, 2},
ΓiηiP

o
q ηT

i =

(C̄vi
Xo + D̄uvi

Zo)X
−1
o (C̄vi

Xo + D̄uvi
Zo)

T .
(36)

(2) If the optimization problem defined by (31)-(35) is
feasible, and the optimal values of (X, Z, Pq) are such
that (36) holds for every i ∈ {1, 2}, then

[

σ2
z̄M

]

p
= γ.
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Fig. 4. Networked system considered in the example of
Section 5.

Moreover, the choice K = Ko , ZoX
−1
o guarantees

that the NCS of Fig. 2 is mean square stable and that
σ2

z̄M = γ.

Proof. The result follows immediately upon using Theo-
rem 1, its proof, and Theorem 2. �

As opposed to the results by Pulgar et al. (2010) (based
upon do Val et al. (2002)), Corollary 1 provides a solution
to Problem 2. In particular, Corollary 1 establishes both
necessary and sufficient conditions for the existence of
K ∈ SM , and an exact characterization of the best
achievable performance in terms of the solution to a
convex optimization problem. It is worth noting that our
result solves the optimal mode-independent static state-
feedback control problem for a specific class of MJLSs. 3

Whether or not our result can be extended to more general
MJLSs is a subject for future research.

We end this section with a remark on computational
complexity. The approach based on MJLS theory adopted
by Pulgar et al. (2010) provides an upper bound on the
solution to Problem 2 in terms of 2c+1 LMIs. If it was
possible to show that Theorem 2 holds for an arbitrary
number of channels (not just c = 2 channels), then
the approach in the present paper would yield an exact
characterization of the solution to Problem 2 in terms of
only 2+ c LMIs. This might imply an important saving in
terms of computational burden, when c is large.

5. SIMULATION STUDY

In this section, we present an example to illustrate the
results of this paper. Consider the control system of Fig.
4, where the plant H has the state space description

[

xH(k + 1)
zH(k)

]

=

[

AH BH BH

CH 0 0

]

[

xH(k)
w(k)
d(k)

]

,

with

AH =







1.1 0 0 0
0 1.5 0 0
0 0 0.8 0
0 0 0 0.2






,

BH =







1 0
0 1
0 1√
2 0






, CH =

[

1 0 1 0
0 1 0

√
2

]

,

and where xH is the state, zH the output, d is a zero mean
white noise disturbance with covariance matrix Pd = I2,
and w is the control input.
3 Namely, those MJLSs that can be written as in Figure 2.

In Fig. 4, the controller output u , [u1 u2]
T has to

be transmitted over an SNR constrained additive noise
channel with n1 = n2 = 1, and maximum admissible
SNRs

Γ1 = 100 and Γ2 = 1.5 .

The control objective is to minimize the stationary vari-
ance of zH .

The convex problem proposed by Pulgar et al. (2010)
to determine an upper bound on the best achievable
performance turns out to be unfeasible. 4 However, the
results of Section 3 allow one to actually find the best
achievable performance, namely [σ2

z ]Γ1,Γ2
= [σ2

z ]100,1.5 =
34.1587. The corresponding optimal controller gain is
given by

Ko =

[

−1.0087 0.5941 −0.2231 −0.0752
0.0783 −1.8081 0.0041 −0.0051

]

, (37)

and the optimal noise variances by

P o
q1

= 0.0109, P o
q2

= 5.4635. (38)

The system of Fig. 4 was simulated 5 using the parameters
in (37) and (38), obtaining a measured stationary variance
for zH equal to 34.1257, and measured channel SNRs given
by

Pv1

Pq1

= 1.4990 and
Pv1

Pq1

= 99.8597 .

As expected, the simulation results match our theoretical
predictions.

Consider now the case where the channel is such that the
maximum allowable SNRs are inverted, i.e., assume that

Γ1 = 1.5, Γ2 = 100.

The results in Pulgar et al. (2010) yield the upper bound
[σ2

z ]Γ1,Γ2
= [σ2

z ]1.5,100 ≤ 115.244. In turn, the approach
proposed in this paper allows one to see that

[σ2
z ]1.5,100 = 10.9503 .

and that the associated optimal static state-feedback gain
is given by

Ko =

[

−0.7826 0.5497 −0.1477 −0.0294
0.7109 −3.2082 0.0642 −0.0845

]

,

and that the optimal noise variances satisfy

P o
q1

= 0.2702, P o
q2

= 0.0267.

We simulated the resulting networked system and, again,
the simulation results matched the theoretical ones quite
well.

We conclude from the above that the system performance
is better in the second case. Thus, u2 should be transmit-
ted over the more reliable channel, whilst u1 should be
transmitted over the less reliable one.

It is also worth noting that, although the results by Pulgar
et al. (2010) allowed one to obtain an upper bound on the
best achievable performance in the second case, this upper
bound is over-conservative (about ten times the actual
optimal performance).

4 We used CVX for Matlab (Grant and Boyd (2010)).
5 All simulation results are averages over 100 simulations, each 104

samples long.
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Fig. 5. Stationary variance of zH , σ2
zH

, as a function of Γ1

and Γ2.

We end this section by showing, in Fig. 5, a plot of the
best achievable performance as a function of the channel
SNRs Γ1 and Γ2.

6. CONCLUSIONS

This paper has studied the problem of optimal control
system design for MIMO LTI systems closed over multiple
SNR constrained channels. For this type of systems, and
by focusing on the state-feedback case, we provided an
LMI based convex optimization problem to fully charac-
terize the best achievable performance. Our methodology
was also applied to optimal control system design for
MIMO LTI systems closed over unreliable channels.

Future work should focus on dynamic output-feedback
control laws, and on an extension of Theorem 2 to the
n-channel case.
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