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Abstract

This paper studies LTI control systems comprising a scalar unreliable channel in the feedback path. We show that, when such
a channel drops data according to a Bernoulli process, it becomes equivalent, as far as second order moments are concerned,
to an additive white noise channel with an instantaneous signal-to-noise ratio constraint. This equivalence allows one to
characterize the set of all LTI controllers that achieve mean square stability in a general control architecture closed over a
scalar unreliable channel, and also enables one to optimally design LTI controllers using standard tools. To illustrate our
results, we study the (LTI dynamic output feedback) control of SISO plants subject to data dropouts. For this situation, we
establish closed form necessary and sufficient conditions on the minimal successful transmission probability that allows one
to design LTI controllers that achieve MSS, when either TCP or UDP-like communication protocols are employed.
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1 Introduction

Networked control systems (NCSs) are control systems subject to communication constraints [1]. This paper focuses
on NCSs closed over channels prone to data-loss.

The simplest model for data-loss assumes that uncorrupted data is received at the receiving end with a probability
that is constant over time [6,7,11,19,20]. This model for data-loss has received the most attention in the literature,
and is also the model adopted in this paper. Other models have been considered in, e.g, [10, 15,27].

Early work in the area of control subject to data-loss includes [9,17]. That work studied simple dropout compensation
schemes, where previously received samples are held when a dropout occurs, or where lost data is replaced by zeros.
The actual design of dropout compensators has been addressed in [16]. A key conclusion in [16] is that, for the
architecture considered there, the resulting switched system is equivalent, in steady state, to a linear system with an
external noise source having a variance proportional to the variance of a signal within the loop. This result is then
used to design a dropout compensator so as to minimize the stationary plant output variance.

The performance gains arising from data-dropout compensation may be marginal in some situations. If that is
the case, then a complete controller re-design is needed. For example, [13, 20] use Markov jump linear system
(MJLS) theory [5] to synthesize controllers that minimize an H∞ functional in the presence of i.i.d. data-dropouts.
Another related work is [7], where the control of SISO plants using LTI controllers and a class of LTI-filter-based
switching compensators is considered. For such architectures, [7] shows that it is possible to view the resulting NCS
as an uncertain linear feedback system where the uncertainty block accounts for the data-dropouts. Using such
a reformulation, and standard robust control tools, [7] studies mean square stabilization in different setups. The
framework in [7] is further extended in [6]. In the latter work, a general MIMO control problem is studied, where

? This paper was not presented at any IFAC meeting. Corresponding author: E.I. Silva, Departamento de Electrónica,
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communication takes place over a fading network. Section 8 in [6] particularizes the results to a case that employs a
single unreliable channel that drops data in an i.i.d. fashion. In this case, and assuming a single input plant whose
state is noiselessly measured, it is shown in [6] that an LTI controller that achieves mean square stability (MSS) can
be found, if and only if the probability of successful transmission is greater than a function of the product of the
unstable plant poles (see also [7]). No performance related questions are considered in [6, 7].

Control subject to data-dropouts has also been addressed from the perspective of classical LQG control theory in,
e.g., [12, 19]. The work [12] was one of the first to point out that there exist control problems where fundamental
differences arise depending on whether or not there exist acknowledgements that testify successful transmissions. If
such acknowledgements are available (TCP-like protocols), then the classical separation principle holds, whilst no
separation holds when no acknowledgements are available (UDP-like protocols) [19]. It has also been shown in [12,19]
that, consistent with the results in [6, 7], there exists a region in the plane of successful transmission probabilities
within which MSS can be guaranteed. As expected, these regions are protocol dependant. Another conclusion in [19]
is that LTI control policies are suboptimal when dealing with data-dropouts. Indeed, in the UDP-like protocol case,
optimal control laws are non-linear in general and they do not seem to admit a simple characterization [19]. This
motivated the study of optimal linear controllers pursued in [24]. The works [12,19,24] assume that lost data in the
controller to actuator link is replaced by zeros. A more general approach is considered in [8], where the architecture
is enriched with an estimator that accounts for lost data at the actuator side. By doing so, it is shown in [8] that
the channel reliability required to achieve stability is, in general, smaller than that identified in [6,7,12,19]. It is also
shown in [8] that the architecture proposed there is optimal irrespective of the actual channel dropout profile.

In this paper we consider a general LTI control system comprising a scalar unreliable channel in the feedback path, and
assume that data-loss is governed by a Bernoulli process. As a first contribution, we show that such an architecture is
equivalent, as far as second order moments are concerned, to an LTI control architecture where the unreliable channel
has been replaced by an additive white noise channel with an instantaneous signal-to-noise ratio constraint. This key
result allows one to obtain a closed form characterization of the set of all LTI controllers that achieve mean square
stability in the considered architecture. It also allows one to address performance related questions. In particular, we
show that optimal LTI controllers can be characterized in terms of a standard quadratic control problem, coupled
with a line search. These results are then used to study the LTI dynamic output feedback control of SISO plants
subject to data dropouts in the feedback path. For this situation, and as a second contribution, we establish both
necessary and sufficient conditions on the minimal successful transmission probability that allows one to design LTI
controllers that achieve MSS, when either TCP or UDP-like communication protocols are employed. Our conditions
are given in closed form and show, when no acknowledgements are available, that the plant non-minimum phase
zeros and relative degree influence the channel reliability required to achieve MSS.

The results in this paper go beyond the results in [16], where no explicit study of the interplay between MSS and
dropout probability is performed. Our results can be seen as an alternative to the robust-control related framework
presented in [6, 7] for the design of LTI control architectures over unreliable channels. But, unlike [6, 7], we study
performance related questions which, by virtue of our results, can be addressed in a simple manner. When applied to
the control of SISO plants, our results allow one to establish necessary and sufficient closed form conditions for the
existence of LTI controllers that achieve MSS in an output-feedback UDP-like protocol based control architecture,
whereas the available results in [12,19] give only sufficient or necessary conditions depending on the plant structure.

The remainder of the paper is organized as follows: Section 2 presents the notation used throughout the paper.
Section 3 presents assumptions and states the problem of interest. Section 4 shows that the NCS architecture under
consideration is equivalent (in the sense indicated above) to a standard LTI feedback loop with an instantaneous
signal-to-noise ratio constraint. Section 5 uses the results of Section 4 to rewrite the problem of optimal LTI controller
design over unreliable channels, in a form that is amenable to solution using standard tools. Section 6 focuses on
SISO plants and presents a numerical example. Section 7 draws conclusions.

2 Notation

R, C and N refer to the real, complex and natural numbers, respectively; N0 , {0, 1, · · · } and R+
0 , {x ∈ R : 0 ≤ x <

∞}. P{·} stands for the probability of (·) and E {·} denotes the expectation operator. Given any scalar x ∈ C, |x|
denotes its magnitude. Given any matrix M , MT and MH denote transpose and conjugate transpose, respectively.
We use z as both the argument of the z-transform and as the forward shift operator, where the meaning is clear
from the context.

2



P̄

K

d z

w v

u y

1− θ

N

channel

Fig. 1. LTI control system closed over a scalar erasure channel.

The set of all proper real rational discrete-time transfer functions is denoted by Rp, and the subset of Rp containing
all stable and proper transfer functions is denoted by RH∞. Any real rational discrete time transfer function A(z)
with no poles on the unit circle belongs to L2. For each A(z) ∈ L2 we define the 2−norm as usual, and denote it by
||·||2 [26]. We usually omit the z argument from transfer functions and write A instead of A(z).

Random processes are always assumed to be real and defined for k ∈ N0. We abbreviate {x(k)}k∈N0 by x. For
any process x (analogous notation is used with random variables), we define µx(k) , E {x(k)}, Rx(k + τ, k) ,
E {

(x(k + τ)− µx(k + τ))(x(k)− µx(k))T
}
, Px(k) , Rx(k, k), σ2

x(k) , trace {Px(k)}. We refer to Px(k) as the
covariance of x, and to σ2

x(k) as the variance of x. Provided they exist, we also define the stationary covariance
and the stationary variance of x via Px , limk→∞ Px(k) and σ2

x , limk→∞ σ2
x(k), respectively. If x is a wide sense

stationary (wss) (asymptotically wss) process, then Sx(ejω) denotes its (stationary) power spectral density (PSD)
and Ωx(z) denotes any spectral factor of Sx(ejω), i.e., Sx(ejω) , Ωx(ejω)Ωx(ejω)H . We say that a random variable
(process) is a second order one if and only if it has finite mean and finite second order moments (for all time instants
k ∈ N0 and also when k →∞). We usually omit the ejω argument in PSDs and spectral factors.

3 Problem Definition

This paper focuses on the NCS architecture of Fig. 1. In that figure, P̄ is a generalized LTI plant, 1 K is an LTI
controller to be designed, d models disturbances, y is a measurable plant output, u is the control input, z is an
output related to closed loop performance, and the channel between v and w is a scalar analog erasure channel. That
is, the channel input v and output w take values in R and are related via

w(k) , (1− θ(k))v(k), ∀k ∈ N0, (1)

where θ is a process that models data dropouts, and θ(k) ∈ {0, 1} ∀k ∈ N0.

We denote the state of P̄ by xP̄ and that of K by xK . We define x , [xT
P̄

xT
K ]T and denote the joint initial state by

xo , [xP̄ (0)T xK(0)T ]T .

Assumption 1
(a) xo is a second order random variable with mean µo and covariance Po. The disturbance d is a zero mean second

order white noise sequence, uncorrelated with xo, and having covariance Pd , ΩdΩH
d .

(b) θ is a sequence of i.i.d. random variables such that θ(k) ∈ {0, 1} and P {θ(k) = 0} = p, ∀k ∈ N0. Moreover, θ is
independent of (xo, d). ¥

The assumptions regarding initial states and disturbance signals are standard. Our second assumption implies that
the channel under consideration drops data in an i.i.d. fashion (as in [6, 7, 11,19,20]).

In order to guarantee the well-posedness of the feedback loop of Fig. 1 for any choice of controller K and any
successful transmission probability p, we introduce the following additional assumption:

1 Unless explicitly stated otherwise, all signals and systems in this paper are of arbitrary dimensions.

3



Assumption 2 P̄ is such that:
(a) If the channel is absent (i.e., no feedback from v to w is present) and K is proper and LTI, then the system of

Fig. 1 is well posed and the transfer function from w to v is strictly proper.
(b) If K is absent and w = v, then the system of Fig. 1 is well posed and the transfer function from u to y is strictly

proper. ¥

Denote by N the LTI system resulting from the interconnection of P̄ and K in the absence of the channel (see
dashed box in Fig. 1). By virtue of Assumption 2(a), a suitable state space description of N is

[
x(k + 1)

z(k)
v(k)

]
=

[
A Bd Bw

Cz Ddz Dwz

Cv Ddv 0

][
x(k)
d(k)
w(k)

]
, k ∈ N0, x(0) = xo, (2)

where all matrices are functions of the matrices in the state space descriptions of P̄ and K, and x(k) ∈ Rnx ∀k ∈ N0.
The switching system of Fig. 1 can thus be described by

x(k + 1) = A(θ(k))x(k) + B(θ(k))d(k), k ∈ N0, x(0) = xo, θ(0) = θo (3a)
z(k) = C(θ(k))x(k) + D(θ(k))d(k), (3b)

where θo ∈ {0, 1} is the random variable corresponding to the initial channel state, and

A(θ(k)) , A + (1− θ(k))BwCv, B(θ(k)) , Bd + (1− θ(k))BwDdv, (4a)

C(θ(k)) , Cz + (1− θ(k))DwzCz, D(θ(k)) , Ddz + (1− θ(k))DwzDdv. (4b)

The state space description in (3) corresponds to that of a standard Markov jump linear system (MJLS) [5]. We
adopt the following notion of stability throughout this paper (see also [5, 6, 14]):

Definition 3 The system described by (3), where (xo, θ, d) satisfies Assumption 1, is mean square stable (MSS 2 )
if and only if there exist finite µ ∈ Rnx and finite M ∈ Rnx×nx , M ≥ 0, such that

lim
k→∞

E {x(k)} = µ, lim
k→∞

E {
x(k)x(k)T

}
= M,

regardless of (xo, θo). ¥

For the MJLS in (3), a characterization of MSS is readily available:

Theorem 4 Consider the MJLS system in (3), suppose that Assumption 1 holds, and define Ap , A+pBwCv. The
following statements are equivalent:

(1) The system in (3) is MSS.
(2) There exists P > 0 such that ApPAT

p + p(1− p)BwCvPCT
v BT

w < P .
(3) The state x is a second order asymptotically wss process, i.e., there exist µx ∈ Rnx and {Qx(τ) ∈ Rnx×nx , τ ∈

N0}, both not depending on (xo, θo), such that limk→∞ E {x(k)} = µx and limk→∞ E
{
x(k + τ)x(k)T

}
= Qx(τ).

PROOF. According to Corollary 3.26 in [5], the system in (3) is MSS if and only if there exists P > 0 such that

pA(0)PA(0)T + (1− p)A(1)PA(1)T < P. (5)

Using Fact 18 in the Appendix, and the definitions of A(θ(k)) and Ap, we conclude that (5) is equivalent to the
inequality in (2) and thus (1) ⇔ (2). The equivalence between Parts (1) and (3) follows from Theorem 3.33 in [5]. 2

The following corollary of Theorem 4 will be useful in the sequel:

2 We will use MSS for both “mean square stable” and “mean square stability”.
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Fig. 2. System N with feedback over (a) erasure channel with dropout probability 1− p, and (b) additive noise channel with
gain p.

Corollary 5 Consider the MJLS system in (3) and suppose that Assumption 1 holds. If the system (3) is MSS,
then z is a second order asymptotically wss process.

PROOF. Immediate from Part (3) of Theorem 4, the definition of z, and Assumption 1. 2

It follows from Corollary 5 that, provided the NCS under consideration is MSS, all signals within the loop become
asymptotically wss processes and, as such, they have well-defined stationary PSDs, covariances, etc.

We can now state the problem of interest in this paper:

Problem 6 Consider the NCS of Fig. 1 and suppose that Assumptions 1 and 2 hold. For a given successful trans-
mission probability p ∈ (0, 1), find (or prove the problem infeasible)

[
σ2

z

]
p

, inf
K∈Sp

σ2
z , (6)

where σ2
z is the stationary variance of z, and Sp , {K ∈ Rp : the loop in Fig. 1 is MSS}. ¥

To address Problem 6, we start by showing in Section 4 that the NCS of Fig. 1 can be analyzed by replacing the
unreliable channel by an additive noise channel with an instantaneous signal-to-noise ratio (SNR) constraint.

4 Data Dropouts as instantaneous SNR Constraints

We redraw Fig. 1 as shown in Fig. 2(a), and consider an auxiliary situation where the scalar erasure channel of
Fig. 2(a) has been replaced by a scalar additive noise channel plus a gain equal to the successful transmission
probability p (see Fig. 2(b)). In Fig. 2(b), q is a noise source satisfying the following:

Assumption 7 The signal q is a scalar zero mean white noise sequence, uncorrelated with (xo, d), and having a
covariance Pq(k) that satisfies the instantaneous SNR constraint

Pq(k) = p(1− p)Pv(k), ∀k ∈ N0, (7)

where Pv(k) corresponds to the covariance of v in the LTI systems of Fig. 2(b). ¥

Given (2), the LTI system of Fig. 2(b) can be described by

x(k + 1) = Apx(k) + Bpd(k) + Bwq(k), k ∈ N0, x(0) = xo (8a)
z(k) = Cpx(k) + Dpd(k) + Dwzq(k), (8b)

where

Ap , A + pBwCv, Bp , Bd + pBwDdv, (9)

Cp , Cz + pDwzCz, Dp , Ddz + pDwzDdv. (10)
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Also, we have that

v(k) = Cvx(k) + Ddvd(k) (11)

holds in both the system of Fig. 2(a) and that of Fig. 2(b).

In the sequel, we will sometimes use M and L superscripts to refer to quantities related to the MJLS of Fig. 2(a),
or to the LTI system of Fig. 2(b), respectively. (E.g., µM

x (k) refers to the mean of x(k) in Fig. 2(a), etc.)

Lemma 8 Consider the MJLS of Fig. 2(a) and the LTI system of Fig. 2(b), where N has the realization given in
(2). If Assumptions 1 and 7 hold, then ∀k, τ ∈ N0:

(1) µL
x (k) = µM

x (k) and RL
x (k + τ, k) = RM

x (k + τ, k).
(2) µL

z (k) = µM
z (k) and RL

z (k + τ, k) = RM
z (k + τ, k).

PROOF.

(1) The first claim is immediate. To prove the second claim, assume, without loss of generality, that µo = 0. Use of
(3a) and Assumption 1 yields

PM
x (k + 1) = pA(0)PM

x (k)A(0)T + (1− p)A(1)PM
x (k)A(1)T + pB(0)PdB(0)T + (1− p)B(1)PdB(1)T

= ΨA(PM
x (k)) + ΨB(PM

x (k)), (12)

where we have used Fact 18 in the Appendix, and have defined, for any suitable matrix P ,

ΨA(P ) , ApPAT
p + p(1− p)BwCvPCT

v BT
w , ΨB(P ) , BpPBT

p + p(1− p)BwDdvPdD
T
dvB

T
w .

On the other hand, (8a) implies

PL
x (k + 1) = ApP

L
x (k)AT

p + BpPdB
T
p + BwPq(k)BT

w

(a)= ΨA(PL
x (k)) + ΨB(PL

x (k))− p(1− p)Bw

(
CvPL

x (k)CT
v + DdvPdD

T
dv

)
BT

w + BwPq(k)BT
w

(b)= ΨA(PL
x (k)) + ΨB(PL

x (k))−Bw

(
p(1− p)PL

v (k)− Pq(k)
)
BT

w

(c)= ΨA(PL
x (k)) + ΨB(PL

x (k)), (13)

where (a) follows from the definition of ΨA and ΨB , (b) follows from (11), and (c) follows from (7). Since
PM

x (0) = PL
x (0) = Po, (12) and (13) imply PL

x (k) = PM
x (k) = Px(k) for every k ∈ N0. On the other hand,

(8a) and (3a) imply that, ∀k, τ ∈ N0, RL
x (k + τ, k) = Aτ

pPL
x (k) and RM

x (k + τ, k) = Aτ
pPM

x (k). Thus, since
PL

x (k) = PM
x (k) = Px(k), our claim follows.

(2) Immediate from (3), (7), (8), (11), and the proof of Part (1) above. 2

Lemma 8 states that, provided q satisfies Assumption 7, the second order moments of the NCS of Fig. 2(a) can be
calculated by considering the simpler LTI system of Fig. 2(b).

The next result relates the MSS of the MJLS of Fig. 2(a) with the internal stability of the LTI system of Fig. 2(b):

Theorem 9 Consider the MJLS of Fig. 2(a) and the LTI system of Fig. 2(b), where N has the realization given in
(2). If Assumptions 1 and 7 hold, then the MJLS is MSS if and only if the LTI system is internally stable and

1 > p(1− p) ||Tqv||22 , (14)

where Tqv is the closed loop transfer function from q to v in Fig. 2(b).
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PROOF.

• (⇒) Note that µM
x (k) = Ak

pµo. Hence, if the MJLS is MSS, then Part 1 of Lemma 8 implies that the LTI system is
internally stable . Also, Corollary 5 and the definition of limit guarantees that Rv(τ) , limk→∞Rv(k + τ, k) exists
for τ ∈ N0, and also that the stationary variance of v, σ2

v = Rv(0), is finite, non-negative and unique. Hence,

σ2
q , lim

k→∞
Pq(k) = p(1− p)σ2

v (15)

is also finite, non-negative and unique.
On the other hand, Fig. 2(b) implies that v = Tdvd + Tqvq (here, Tdv refers to the transfer function between d

and v in Fig. 2(b)). Thus, the facts in the previous paragraph allow one to write

σ2
v = ||TdvΩd||22 + σ2

q ||Tqv||22 = ||TdvΩd||22 + p(1− p)σ2
v ||Tqv||22 , (16)

where we have used (15). Now, since (16) admits a unique solution for σ2
v if and only if (14) is satisfied, our claim

follows.
• (⇐) This part of the proof follows by mimicking the proof of Theorem 3.2 in [16]. 2

Theorem 9 characterizes the MSS of the NCS of interest (equivalently, of the MJLS of Fig. 2(a)) in terms of the
internal stability of the auxiliary LTI system of Fig. 2(b), and an inequality constraint. As shown in the proof of
Theorem 9, the internal stability of the auxiliary LTI system is easily seen to be equivalent to the internal stability of
the system SE that governs the mean of the state in the NCS. Thus, the “only if” part of Theorem 9 is unsurprising
(see also Proposition 3.6 in [5]). However, it is well known that, in general, the asymptotic stability of SE is not
sufficient for the associated MJLS to be MSS (see Remark 3.7 in [5]). Our result shows, for the class of systems
under study, that the stability of SE , and the additional inequality in (14), guarantee the MSS of the MJLS.

Corollary 10 Consider the setup and assumptions of Theorem 9. Denote by Txy the closed loop transfer function
from x to y in the feedback loop of Fig. 2(b).

(1) If the LTI system is internally stable and (14) holds, then the stationary PSD of z in Fig. 2(b) is given by

SL
z = TdzSdT

H
dz + σ2

qTqzT
H
qz , (17)

where σ2
q ∈ R+

0 is the stationary variance of q, and satisfies

σ2
q =

p(1− p) ||TdvΩd||22
1− p(1− p) ||Tqv||22

. (18)

(2) If the MJLS is MSS, then SM
z = SL

z .

PROOF. Since Lemma 8 and Corollary 5 hold, it suffices to prove Part 1. From Theorem 9 and its proof, we have
that (16) and (15) hold. Thus, σ2

q exists, is finite and satisfies (18). Also, from Fig. 2(b), we have that z = Tdzd+Tqzq.
Since the LTI is internally stable and σ2

q exists, (17) follows. 2

Provided MSS holds, Corollary 10 gives a closed form expression for the stationary PSD of z in the NCS under
study.

We conclude from Lemma 8, Theorem 9 and Corollary 10 that both instantaneous and stationary second-order and
MSS-related properties of the NCS under study (equivalently, of the MJLS of Fig. 2(a)) can be studied by means
of the simpler LTI system of Fig. 2(b), where the unreliable channel has been replaced by an additive white noise
channel, having gain p and a fixed instantaneous SNR constraint. This key insight will be exploited in Section 5 to
characterize the solution of Problem 6.
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Fig. 3. Rewriting of the NCS of Fig. 1 using the equivalent additive channel noise model.

A particular instance of Theorems 9 and Corollary 10 has been previously reported in [15,16]. However, the results
in [15, 16] were presented only for a specific NCS architecture. To the best of the authors knowledge, both the
instantaneous second order equivalence revealed by Lemma 8, and the connections between unreliable channels and
SNR constrained additive noise channels, are new results. 3

5 Design of Controllers implemented over Unreliable Channels

This section presents the main result of this paper. Namely, we show that Problem 6 is essentially equivalent to a
standard quadratic optimal control problem.

Consider the NCS of Fig. 1. Using the results of Section 4, we rewrite the NCS as shown in Fig. 3, where P is
partitioned such that




z
v
y


 =




[
P z

11 P z
12

]
[
P v

11 P v
12

]
[
P21 P22

]







d
q
u


 . (19)

We note that, provided Assumption 2(b) holds, P22 is strictly proper. The realization that P22 inherits when the
system of Fig. 1 is rewritten as in Fig. 3, will be referred to as the inherited realization of P22.

Lemma 11 Consider the NCS of Fig. 1, suppose that Assumptions 1 and 2 hold, and also that the inherited realiza-
tion of P22 is stabilizable and detectable. Consider a doubly coprime factorization of P22 over RH∞, i.e., consider
Xi, Yi, Xd, Yd, Ni, Di, Nd, Dd ∈ RH∞, with Xi, Xd, Di, Dd biproper, such that P22 = NdD

−1
d = D−1

i Ni and

[
Xi −Yi

−Ni Di

] [
Dd Yd

Nd Xd

]
=

[
I 0
0 I

]
. (20)

(1) The controller K belongs to Sp (see definition in Problem 6) if and only if there exists Q ∈ RH∞ such that

K = (Xi −QNi)−1(Yi −QDi), (21)

and

p(1− p) ||Ao −BoQCo||22 < 1, (22)

where Ao , (P v
11 + P v

12DdYiP21)η, Bo , P v
12Dd, and Co , DiP21η are transfer functions in RH∞, and

η , [0 · · · 0 1]T .
(2) The set P of all successful transmission probabilities p ∈ (0, 1) that make Sp non-empty (hence ensuring the

feasibility of Problem 6) is given by

P =
{

p ∈ (0, 1) : p(1− p) inf
Q∈RH∞

||Ao −BoQCo||22 < 1
}

, (23)

with Ao, Bo, Co as above.

3 Preliminary stationary versions of these results were reported by us in [21,22].
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PROOF. Our claims follow upon using Theorem 9, the well-known Youla-Kucera parameterization of all stabilizing
controllers for LTI plants (see, e.g., [26]), (19), and the definition of P. 2

We next use Lemma 11 to prove the main result of this section. To that end, we introduce a simplifying assumption:

Assumption 12 If Problem 6 is feasible, then the optimal controller K is such that the closed loop transfer function
from d to v in Fig. 3 satisfies TdvΩd 6≡ 0. ¥

Assumption 12 is reasonable. Indeed, if it did not hold, then optimal performance would be achieved without sending
any information about d over the communication channel. Clearly, that case is uninteresting when studying NCSs.

Theorem 13 Consider the NCS of Fig. 1 and suppose that Assumptions 1 and 2 hold. If the inherited realization
of P22 is stabilizable and detectable, p ∈ P, and Assumption 12 holds, then (recall Problem 6)

[
σ2

z

]
p

= inf
σ2

q∈R+
0

inf
Q∈RH∞

R
σ2

q
(Q) ≤ σ2

q
1

p(1−p)

Jσ2
q
(Q), (24)

where, for any given σ2
q ∈ R+

0 ,

Jσ2
q
(Q) , ||(A1 −B1QC1)Ω||22 , Rσ2

q
(Q) , ||(A2 −B2QC2)Ω||22 , (25)

with Ai, Bi, Ci ∈ RH∞,

A1 , P z
11 + P z

12DdYiP21, B1 , P z
12Dd, C1 , DiP21, (26)

A2 , P v
11 + P v

12DdYiP21, B2 , P v
12Dd, C2 , DiP21, (27)

and Ω , diag {Ωd, σq}.

PROOF. For any K ∈ Sp, Theorem 9, and its proof, imply that the stationary variances of both v and q exist, and
are related via σ2

q = p(1− p)σ2
v . Thus, Part 1 of Corollary 10 with z = v, allows one to write

σ2
v =

σ2
q

p(1− p)
= ||TdvΩd||22 + σ2

q ||Tqv||22 = ||[Tdv Tqv] Ω||2
2
. (28)

Corollary 10 also implies that the stationary variance of z satisfies

σ2
z = ||TdzΩd||22 + σ2

q ||Tqz||22 = ||[Tdz Tqz] Ω||22 , (29)

for any K ∈ Sp. Given (21) and (19), it follows from Fig. 3 that (29) can be rewritten as σ2
z = Jσ2

q
(Q), and (28) as

σ2
v = Rσ2

q
(Q). On the other hand, (18) implies that (14) (equivalently (22)) holds if and only if σ2

q ∈ R+
0 . We thus

conclude that
[
σ2

z

]
p

, inf
Q∈RH∞, σ2

q∈R+
0

R
σ2

q
(Q) = σ2

q
1

p(1−p)

Jσ2
q
(Q). (30)

To complete the proof, we next show that the inequality constraint in (24) is active at the optimum. We rewrite (28)
as

σ2
v

σ2
q

=
||TdvΩd||22

σ2
q

+ ||Tqv||22 =
1

p(1− p)
. (31)
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Fig. 4. SISO plant controlled over an unreliable channel.

Since TdvΩd 6≡ 0 at the optimum, (31) shows that, if the inequality constraint in (24) is not active at the optimum,
then one can always reduce the value of σ2

q so as to make the inequality constraint active. Thus, if Tqz ≡ 0 at the
optimum, then one can always pick σ2

q so as to make the inequality constraint in (24) active, without compromising
optimality. If, on the other hand, Tqz 6≡ 0 at the optimum, then reducing σ2

q implies a decrease in σ2
z (see (29)),

which contradicts optimality. This completes the proof. 2

The characterization of the solution of Problem 6 provided by Theorem 13 is not explicit. However, since both Jσ2
q

and Rσ2
q

are convex functions of Q, the inner problem in (24) is a standard convex quadratic optimal control problem
that can be solved using standard tools including LMIs (see, e.g., [2, 3]). The outer problem in (24) is a line search
and poses no numerical difficulties. A detailed study of the optimization problem in (24) can be found in [23].

It is worth noting that Theorem 13 is a direct consequence of the equivalence between unreliable channels and SNR
constrained additive noise channels established in Section 4.

6 Control of SISO Plants over Unreliable Channels

In this section we illustrate our results by focusing on the control of a SISO LTI plant H modelled by

[
xH(k + 1)

yH(k)

]
=

[
AH BH,u BH,d

CH 0 DH,d

] [
xH(k)
uH(k)
dH(k)

]
, k ∈ N0, xH(0) = xH,o, (32)

where xH is the nxH -dimensional state, uH is the scalar control input, dH is an m-dimensional disturbance signal,
and yH is a scalar output that can be measured. Our aim is to control H over a scalar erasure channel. We restrict
ourselves to LTI controllers and utilize the architecture shown in Fig. 4. In that figure, n models measurement noise
and K is the LTI controller.

The dashed line in Fig. 4 suggests that one-step-delayed feedback around the channel may be exploited by the
controller K. If such feedback is available, then it is implicitly assumed that the communication protocol provides
perfect packet acknowledgements (TCP-like protocols; see, e.g., [12,19]). If no acknowledgements are available (UDP-
like protocols), then K can only use n + yH to construct the channel input v.

The next result presents conditions for the existence of controllers K that render the NCS of Fig. 4 MSS:

Theorem 14 Consider the NCS of Fig. 4 and assume that H is unstable, that (AH , BH,u, CH , 0) is both detectable
and stabilizable, that the initial states of H and K, say xH,o and xK,o, are second order random variables, and
that [dT

H n]T is a zero mean second order wss sequence uncorrelated with [xT
H,o xT

K,o]
T . If the dropout process θ is

independent of (xH,o, xK,o, dH , n) and satisfies Assumption 1(b), then:

10



(1) If one-step-delayed feedback around the channel is available (TCP-like protocols), then there exists a proper LTI
K that achieves MSS if and only if

p > pinf , 1− 1∏np

i=1 |pi|2
, (33)

where p1, · · · , pnp are the unstable poles of H (i.e., the eigenvalues of AH in {z ∈ C : |z| ≥ 1}).
(2) If no feedback around the channel is available (UDP-like protocols), then there exists a proper LTI K that

achieves MSS if and only if

p > 1− 1(∏np

i=1 |pi|2
)

+ ∆
, (34)

where p1, · · · , pnp
are the unstable poles of H, and ∆ , η + δ ≥ 0, with δ and η defined as in Equation (34)

in [4] with Gd = CH(zI −AH)−1BH,u. Moreover, ∆ = 0 if and only if the plant has relative degree one and has
no zeros in {z ∈ C : |z| > 1}.

PROOF. Our assumptions together with the structure assumed for H (see (32)), imply that the scheme of Fig. 4,
when rewritten as in the general form of Fig. 1, satisfies Assumptions 1(a) and 2, and also that the assumptions of
Lemma 11 are satisfied. Define G , CH(zI −AH)−1BH,u.

(1) We rewrite the scheme of Fig. 4 in the general form of Fig. 1. Given our assumptions, Lemma 11 is applicable
and hence suffices to characterize the set P in (23) to prove our claim.

If feedback around the channel is available, then inspection of Fig. 4 reveals that P22 = p[G z−1]T . Assume
that N, D ∈ RH∞ form a coprime factorization of G over RH∞. A coprime factorization of P22 is thus given
by P22 = NdD

−1
d = D−1

i Ni, with Nd , [pN pz−1D]T , Dd , D, Ni , [pN pz−1], Di , diag {D, 1}, and
Ao, Bo, Co are given by Ao = DdYi[G z−1]T = p−1YiNd, Bo = Dd = D, and Co = Di[G z−1]T = p−1Ni.

Using the proof of Theorem 17 in [23], we conclude that

p2 ||Ao −BoQCo||22 ≥
(

np∏

i=1

|pi|2
)
− 1, (35)

where the gap between both sides of (35) can be made arbitrarily small with some Q ∈ RH∞. It is now
immediate to conclude that P =

{
p ∈ (0, 1) : p(1−p)

p2

(∏np

i=1 |pi|2 − 1
)

< 1
}

, from where Part 1 readily follows.
(2) This part follows by proceeding as above and exploiting Theorem III.2 in [4]. 2

Remark 15 If H is stable, then K = 0 achieves MSS in the NCS of Fig. 4 for any p. ¥

Theorem 14 gives an explicit characterization of the minimal successful transmission probability, p, that allows one
to design a controller K that guarantees MSS in the NCS of Fig. 4. As expected, the degree of instability of the plant
(as measured by the product of its unstable poles) plays a key role in the channel reliability required to achieve MSS.
When TCP-like protocols are used, unstable poles are the only source of limitation on the admissible values for p.
However, when UDP-like protocols are employed, plant non-minimum phase zeros and relative degree also play a
role and, in general, more stringent conditions on p arise. (The requirements on p are the same in both situations if
and only if the plant has relative degree one and no zeros in {z ∈ C : |z| > 1}.)

In the TCP-like protocol case, our results are consistent with the results in [19] (see also [12]). However, our results
hold when LTI controllers are employed, whereas the results in [19] consider time varying control schemes. Stated
another way, for any given scalar analog erasure channel and a TCP-like communication protocol, the class of SISO
plant models for which the time varying schemes of [19] achieve MSS, is the same class for which our proposal does
so. This implies that time varying control architectures provide no aditional advantages over LTI ones, when the
plant is LTI, SISO, and mean square stabilization is the only control objective.

11



In the UDP-like protocol case, the results of Theorem 6.1 in [19] 4 give explicit necessary conditions on the dropout
probabilities that guarantee MSS for the case of plant models that have a square and invertible state-to-output
matrix (the “C” matrix). That condition turns out to be also sufficient in the case of systems that, in addition,
have a square and invertible input-to-state matrix (“B” matrix; see [12]). In the SISO case, having both a square
input-to-state and state-to-output matrix is tantamount to having a one-dimensional (i.e., scalar) plant model. Our
results are not only consistent with the results mentioned above, but they also provide both necessary and sufficient
conditions which are valid for any SISO LTI plant, controlled using the architecture of Fig. 4.

Theorem 14 also extends the results of Section 8 in [6]. In that work, the author shows that (33) is necessary and
sufficient to be able to find a one-degree of freedom LTI controller (that does not use packet acknowledgements), so
as to achieve MSS in an NCS built around a single input plant whose state can be noiselessly measured. Part 2 of
Theorem 14 shows that, in the (noisy) output feedback case, more than the unstable plant poles limit the channel
reliability required to achieve MSS. Plant non-minimum phase zeros and relative degree also play a role. (This fact
was loosely mentioned in Section V.B in [7], but no closed form expression quantifying the effect of non-minimum
phase zeros or relative degree was presented.)

If, in Fig. 4, one is interested in more than the stability issue, then, irrespective of whether one assumes feedback
around the channel or not, it suffices to use Theorem 13 to obtain an optimization problem that can be tackled using
standard tools, and whose solution yields an LTI controller K that optimizes performance.

The performance achieved by the controller that our methodology suggests is only optimal within the class of
control architectures under consideration, i.e., when the architecture of Fig. 4 is used and K is LTI. Obviously,
better performance may be attainable if one considers time varying controllers or more complex architectures as
proposed in, e.g., [19, 20]. Indeed, it has been shown in [19] that optimal control policies for control problems that
involve unreliable channels are, in general, time varying and, in the case of employing UDP-like protocols, non-linear.
Our approach, although suboptimal, allows one to achieve performance levels that may be acceptable in practice.

The work [24] also provides a characterization of optimal linear controllers for NCSs that are subject to data loss. Our
results, as opposed to those in [24], reveal the fact that a solution to Problem 6 can be found using only well-known
optimization methods. 5

Remark 16 It is possible to use our framework to study LTI control architectures that are more complex than that
of Fig. 4. For example, one can include an LTI system M between the output of the channel w and the input of the
plant uH (see Fig. 4). Interestingly, Theorem 14 still applies in that case (see details in Chapter 7 of [21]). However,
a difficulty arises when attempting to optimally designing this new control architecture. Since the communication
constraint precludes the use of the measured plant output at the receiving end, rewriting the resulting feedback system
in the standard form of Fig. 3 results in a controller K with a sparsity constraint (see, e.g., [18]). Thus, the optimal
design problem becomes a non-convex problem [25]. To circumvent this complication, one can proceed in an iterative
fashion: first, design K for a given M ; then, design M for the previously chosen K, etc. Each of these steps yields
a problem that fits into the setup of Theorem 13. ¥

Example 17 Consider a plant H such that

yH =
−0.25(z − 2)
(z2 + z + 1.5)

(uH + dH). (36)

Assume that n = 0 and that dH is a zero mean white noise sequence with unitary variance.

If packet acknowledgements are exploited by K, then p > 0.5556 is necessary and sufficient to be able to find a
stabilizing K. If no packet acknowledgements are exploited, then the condition becomes p > 0.6032. In both cases, we
have computed the best performance achievable using the architecture of Fig. 4 for several values of p. The results
are presented in Fig. 5(a). As expected, the performance becomes increasingly worse as p approaches the minimal
p compatible with MSS in each of the cases. It is also unsurprising that, as p → 1, we recover the best possible
non-networked performance irrespective of whether acknowledgements are exploited by K or not. Fig. 5(b) shows the

4 Note that equation (40) in Theorem 6.1 in [19] contains a typo that is corrected in the corresponding proof.
5 We note, however, that the work in [24] focuses on architectures with two unreliable channels (one for the controller-to-
actuator link, and one for the sensor-to-controller link).
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Fig. 5. (a) Best performance achievable with the architecture of Fig. 4 when both TCP-like and UDP-like protocols are
employed, and (b) relative performance deterioration when K does not use packet acknowledgements, with respect to the
situation where acknowledgements are used.

relative performance deterioration ∆σ2
yH

(in %) when K does not use packet acknowledgements, with respect to the
situation where such acknowledgements are used. The performance gains arising form the use of acknowledgements
are significative over a wide range of values for p. ¥

7 Conclusions

This paper has studied LTI control architectures that comprise a scalar unreliable channel in the feedback path. We
have shown that, when data-dropouts are governed by a Bernoulli process, the unreliable channel is equivalent to
an additive white noise channel with an instantaneous signal-to-noise ratio constraint. This key insight has enabled
us to restate an optimal control problem over unreliable channels, in terms of a standard quadratic problem.

To illustrate our results, we have studied the control of SISO plants. For this situation, we were able to establish
closed form necessary and sufficient conditions on the minimal successful transmission probability that allows one
to design LTI controllers that achieve MSS. This was possible even when UDP-like communication protocols are
employed, thus extending previous results reported in [6, 7, 12,19].

Future work should focus on situations where multiple channels are used, and on the MIMO case.
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A Appendix

Fact 18 Consider X1, X2 ∈ Rnx×mx , Y1, Y2 ∈ Rny×my , and p, dr ∈ R. Define Xp , X1 + pX2, Yp , Y1 + pY2,
X(dr) , X1 + (1− dr)X2, Y (dr) , Y1 + (1− dr)Y2. Then,

pX(0)PY (0)T + (1− p)X(1)PY (1)T = XpPY T
p + p(1− p)X2PY T

2 (A.1)

for any P ∈ Rmx×my .

PROOF. Immediate upon expanding both sides of (A.1). 2
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