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A Bound on the MSE of Oversampled Dithered
Quantization With Feedback

Milan S. Derpich

Abstract—We analyze the behavior of the mean squared error
(MSE) achievable by oversampled, uniform scalar quantization
using feedback, pre- and post-filters of unrestricted order, when
encoding wide-sense stationary discrete-time random sources
having (possibly) unbounded support. Our results are based upon
the use of subtractively dithered uniform scalar quantizers. We
consider the number of quantization levels, , to be given and
fixed, which lends itself to fixed-rate encoding, and focus on the
cases in which is insufficient to avoid overload. In order to
guarantee the stability of the closed-loop, we consider the use
of a clipper before the scalar quantizer. Our results are valid
for zero-mean sources having independent innovations whose
moments satisfy some mild requirements, which are met by infi-
nite-support distributions such as Gaussian and Laplacian. We
show that, for fixed , the MSE can be made to decay with the
oversampling ratio as �� � when tends to infinity,
where � �� �� ���� �. We note that the latter bound is
asymptotic in but not in , and that it includes clipping errors.

Index Terms—Oversampling, quantization, 	
 converters.

I. INTRODUCTION

I T is well know that oversampling can reduce the magnitude
of the reconstruction error that originates from quantizing

the samples of an analog source, see., e.g., [1]–[3]. This reduc-
tion is exploited by analog-to-digital converters (ADCs) such
as sigma-delta modulators, which have been successfully
utilized in audio and image quantization [1].

It was shown in [2] that the MSE of modulation is
, as , where is the oversampling ratio

and denotes the order of the feedback filter (assumed fixed
for all values of ). In their analysis, the authors of [2] utilized
an additive noise model (ANM) [4], in which quantization
errors are assumed to form a wide sense stationary (w.s.s.)
random process, white and uncorrelated with the input samples.
Also using the ANM, it was recently shown in [5] that by using
different filters (of unrestricted order) for each value of , the
MSE can be made to decay as , where denotes
the signal-to-noise ratio of the scalar quantizer. The analysis
in [2] and [5] restrict to the cases where the effect of quantizer
overload errors is negligible, which cannot be guaranteed
if when the source has unbounded support unless
infinitely many quantization levels are available. Indeed, an im-
portant body of literature related to oversampled quantization
avoids overload errors either by careful design of the converters
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Fig. 1. Scalar feedback quantization scheme with subtractive dither.

or by simply assuming there exist enough quantization levels
to avoid overload, see e.g., [3], [6] and the references therein.

Families of 1-bit (two-level) converters in which the
quantizer is guaranteed to never overload have been found in [7],
[8], by following a deterministic approach. The converters in
[7] yield a continuous-time reconstruction error that can be uni-
formly bounded by a term proportional to , where
is independent of . In turn, the continuous-time reconstruction
error with the converters constructed in [8] can be uniformly
bounded as when . This leads immediately
to an MSE that behaves as , when . To the
best of the author’s knowledge, the latter is the fastest decay
rate of the reconstruction error with available in the literature.
1 However, the results in [7] and [8] have not been extended to

modulators with more than two quantization levels, and
rely upon the input samples being uniformly bounded. On the
other hand, available results on the quantization of unbounded
sources including the effects of overload errors do not consider
oversampling, see, e.g., [9] and the references therein.

In this letter, we study the behaviour of the MSE with
increasing oversampling ratio when the source is a (pos-
sibly unbounded) wide sense stationary (w.s.s.) band-limited
process. Our analysis is based upon the use of a subtractively
dithered uniform scalar quantizer (SDUSQ) [10], preceeded
by a clipper, together with feedback, pre- and post-filters of
unrestricted order (see Fig. 1). We focus on the cases in which
the number of quantization levels, , is insufficient to avoid
quantizer overload. We show that, for this architecture, the
MSE can be made to decay with as , where

, provided the following holds.
Assumption 1: The source process has independent innova-

tions , with zero mean and symmetric probability density
function (PDF). Moreover, there exists a constant such
that the -th moments of each satisfy

(1)

This letter extends the work in [5] by taking account of clip-
ping errors in the analysis.

1Krahmer, Güntürk and Deift have recently obtained a faster decay rate, but
this result does not seem to be available at the time of this publication.
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II. PRELIMINARIES AND PROBLEM STATEMENT

Our results are related with the feedback quantization archi-
tecture shown in Fig. 1. In this scheme, the samples

form a zero-mean w.s.s. process, obtained from sampling a
w.s.s. band-limited analog signal. For each oversampling ratio

, the power spectral density (PSD) of can be
written as , where

(2)

In (2), , and is the square root of the PSD of the
input process when . It is assumed that the input process
has finite power, i.e., that . For
simplicity, we shall further restrict the analysis to the cases in
which . Notice also from (2) that
the total power of (in units of variance per sample), remains
constant for all .

In Fig. 1, represents a uniform scalar quantizer, with quanti-
zation interval and reconstruction levels. The dither
is a random process with i.i.d. samples independent of
and uniformly distributed over the interval .
Adding dither to the input of the quantizer reduces the range
for the input signal over which quantizer overload cannot
occur. Since the dither is distributed over , this
range is . It is well known that such a dither signal
yields a quantization error process with i.i.d. samples
which are also independent of the source [10], [11], provided

, i.e., as long as does not
overload. Quantization error samples appear in the output as the
stationary process . In order to
keep from overloading, we consider the use of a clipper before

, as shown in Fig. 1. The clipper limits the value of the input
signal so that , if , or

, if ,
thus ensuring stability, see [5]. The key point here is that, unlike
overload errors, clipping errors, given by ,
are not injected into the feedback loop. Instead, clipping errors
appear in the output after being filtered by , to yield the
process . Unless the source
is a stationary process, one cannot guarantee that the samples
of the clipping error will form a stationary, or even a w.s.s.,
random process. In order to quantify the contribution of clip-
ping errors to the MSE for not-necessarily stationary sources,
we define the average power of clipping errors in the output as

(3)

where denotes expectation. Similarly, we define the average
power of the reconstruction error as

(4)

Two important parameters characterizing the conditions
under which the combination of clipper and quantizer operate
are the signal-to-noise ratio (SNR)

(5)

and the loading factor

(6)

It follows from (5) and (6) that, if and are kept fixed, then
can only be increased at the expense of reducing the SNR at

which the clipper and operate.
For the scheme of Fig. 1, it was shown in [5] that the recon-

struction MSE due to granular quantization errors only, which
here corresponds to , can be upper bounded as

(7)

where and the scalar function yields
the unique value of that satisfies

(8)

when . Upon defining
, it is also shown in [5] that, for (7) to hold, the frequency

responses of and must satisfy

(9)

(10)

(11)

i.e., on , for every , where satisfies (8). In (10)
and (11), can be any bounded, nonzero gain. With the optimal
filters in (10)–(11), relates to and the variance via [5]

(12)

Notice the upper bound on the MSE due to granular quantiza-
tion errors in (7) decays exponentially with . However, the be-
haviour of the average power of clipping errors with increasing

is unknown. Therefore, in view of (4), the exponential decay
of given by (7) does not necessarily hold for , for suf-
ficiently large. In the next section we find an upper bound to
the total average power of the reconstruction error , including
clipping errors.

III. MAIN RESULT

We start with the following technical lemma:
Lemma 1: Let be independent random variables

with moments , and let . If there
exists a constant such that (1) is satisfied, then

(13)

where denotes probability.
Proof: From one of Bernstein’s inequalities, given in [12,

Sec. 5.5], we have that

(14)

such that . For
every , the tightest bound for the first inequality in (14)
is obtained with . Substituting this into
(14) yields . The latter,
together with the fact that

leads directly to (13), completing the proof.
The following theorem provides an upper bound for ap-

plicable (but not restricted) to situations in which the source has
unbounded support.

Theorem 1: Suppose there exists a scalar such that
[see (2)]. Suppose that Assumption
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1 holds, and that the innovations of satisfy (1) with
, for some constant . Then

(15)

where is the loading factor defined in (6), and where

(16)

Proof: We have from (3) that

(17)

where , and where
. We will first

upper bound and then .
a) Bounding : From (9) and (10), we have

(18)

From (12), . Substitution of this into
(9) yields

Noting that (see the Proof of Theorem
5 in [5]), we obtain

Substitution of this last equation and (2) into (18) yields

(19)

. The fact that decreases monotoni-
cally with increasing , together with (19), leads to

(20)

. In order to get rid of in the right hand
side of (20), we will use an upper bound for instead of
the latter. More precisely, since , it follows directly
from (8) that

(21)

and thus
. Substitution of the latter into (20) yields

(22)

b) Bounding : For every is a linear combi-
nation of the i.i.d. random variables , and the inde-
pendent random variables . Notice also that, due to
the use of subtractive dither, the random variables and
are independent for all . More explicitly, at any instant

, we can write

(23a)

(23b)

(23c)

where the sequence

(24)

is made of independent random variables and where
and are constants. We will upper bound by
applying Lemma 1 to . To do so, we need to
find a value for , say , for which the random variables

satisfy (1). This can be done by upper bounding the
coefficients and . From (23) and Fig. 1, we have that

(25)

From (19), and since , the frequency re-
sponse magnitude of the pre-filter can be upper bounded
as , which, when substi-
tuted into the right hand side of (25), yields

. The latter yields

(26)

Similarly, from (23), and since , we have that
, which leads directly to

(27)

Since, for any random variable x and scalar , it
follows from (24), (26), and (27) that

(28)

(29)

Substituting by into (13), we obtain

(30)

From (30), we have that the variance of cannot be larger than
that obtained if v were a random variable with cumulative PDF
given by

(31)

Hence, for , the variance of overload errors
can be upper bounded as

(32)

(33)

(34)

since

see (16). Substituting (34) and (22) into (17), we obtain

(35)

where (5) and (16) were used. This completes the proof.

Authorized licensed use limited to: Universidad Tecnica Federico Santa Maria. Downloaded on October 20, 2009 at 13:19 from IEEE Xplore.  Restrictions apply. 



544 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 6, JUNE 2009

Thus, we have obtained an upper bound on the MSE due to
clipping errors that grows linearly with and decays exponen-
tially with (provided the product does not tend to zero as

, see (16)).
Now we can upper bound the total MSE:
Theorem 2: Suppose the conditions of Theorem 1 hold. If the

loading factor varies with the oversampling ratio as

(36)

then , the MSE including overload errors, satisfies

(37)

where the constant .
Proof: We have that

(38)

Substitution of (3) and (38) into (4) yields

(39)

By substituting (21) into (7), the upper bound to the MSE due
to granular quantization errors in (7) becomes

(40)

Upon substituting (35) and (15) in (39), we obtain the following
upper bound:

(41)

The above upper bound for does not tend to zero with in-
creasing unless one makes the loading factor grow with
fast enough. Substituting and (6) into (5) we obtain

. From the latter, we have that ,
where . Thus, the term due to clipping errors in
(41) can be reduced only at the expense of having operate at a
lower SNR. This, in turn, makes the term due to granular errors
decay more slowly with increasing .

For example, if one makes the loading factor grow with as
, where and are constants to be chosen,

then the RHS of (41) becomes

(42)

The optimal decay rate when is achieved by choosing
and so as to make granular and clipping error terms decay at
the same asymptotic rate. This is achieved if and only if and

are chosen so that

(43)

equals 1. Before evaluating the above limit, note that from (16)
we obtain
since , being a random variable uniformly distributed
over , has standard deviation
and satisfies (1) with . Applying l’Hôpital’s
rule to (43) twice and substituting by , we obtain that

, where

By comparing the powers of in and , it is clear
that is either 0 or unless . With this choice, we
get , and thus .
Therefore, the right-hand side of (43) equals 1 iff and

, which yields (36). Substituting these values into
(42) and (41) we obtain , where

(44)

, and where
. From (44), it is

straightforward to show that

(45)

From (45) we have that, for any constant , the following
holds:

From the definition of limit, this implies that
. A similar limit is obtained for . The result

then follows by noting that .

IV. CONCLUSION

We have studied the asymptotic behaviour of the reconstruc-
tion MSE of fixed rate dithered quantization with feedback as
the oversampling ratio tends to infinity, for w.s.s. sources
having possibly unbounded support. It was shown that with the
proper choice of filters and loading factor for each , the MSE
can decrease with at least as fast as , where
does not depend on .
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