
IRI-h, A Java-Based Distance Education
System: Architecture and Performance

K. MALY, H. ABDEL-WAHAB, C. WILD, C. M. OVERSTREET, A. GUPTA,
A. ABDEL-HAMID, S. GHANEM, A. GONZALEZ, and X. ZHU
Old Dominion University

We used our original Interactive Remote Instruction (IRI) system to teach scores of university
classes over the past five years at sites up to 300 km apart. While this system is a prototype,
its use in real classes allows us to deal with crucial issues in distributed education instruction
systems. We describe our motivation and vision for a reimplementation of IRI that supports
synchronous and asynchronous distance education. This new version, called IRI-h (h for
heterogeneous), is coded in Java and executes on several different platforms. IRI-h extends
IRI both to multiple platforms and heterogeneous network infrastructures, including delivery
to home users. In this article we describe IRI-h’s architectural experiences with the developing
prototype, including preliminary performance evaluation, and also unresolved issues still to be
addressed.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; K.3.1 [Computers and Education]: Computer Uses
in Education—Collaborative learning; Distance learning

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Heterogeneity, Java, platform independence

1. INTRODUCTION
We have used the current version of our Interactive Remote Instruction
(IRI) system to teach dozens of for-credit university classes over the past
five years. These classes use university-provided equipment in sites up to
300 km apart connected by an Intranet with dedicated bandwidth. The
current IRI supports multiple simultaneous video/audio, tool-sharing, and
many other services in which any class member, student, or instructor can
become a presenter, controlling a collection of shared tools at will to provide

The IRI-h project is partially supported by NSF under grant NSF-RED-9554261.
Authors’ address: Department of Computer Science, Old Dominion University, Norfolk, VA
23529–0162; email: {maly; wahab; wild; cmo; ajay; hamid; ghanem; gonza_a; zhu}@cs.odu.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1531-4278/01/0300–0006 $5.00

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001, Article #6, 15 pages.

a synchronous virtual classroom environment (see Maly et al. [1997] for
more complete descriptions of IRI’s current capabilities and design).

Even with all of this experience, IRI is still a work-in-progress. These
live-classroom experiences provide the bases for a better understanding of
both technical implementation issues, features important to teachers and
students, and interface issues. We used our improved understanding to
design a new IRI called IRI-h [Maly et al. 2000] that we are now complet-
ing. The “h” in the acronym stands for heterogeneous to indicate that, in
contrast to the old system, it functions on multiple platforms and network
environments.

The rest of the article is organized as follows. Section 2 summaries
limitations of the current IRI system, and hence the motivation and
general overview for IRI-h. Section 3 presents a view of the IRI-h use of
heterogeneous networks; Section 4 depicts IRI-h software architecture.
Section 5 explores the IRI-h prototype implementation and capabilities.
Section 6 presents preliminary performance results for IRI-h major ser-
vices, including audio, video, and tool-sharing. Section 7 highlights some
unresolved issues, along with preliminary suggested solutions. Finally, the
article concludes in Section 8.

2. IRI-h: MOTIVATION AND OVERVIEW

Though we are now using the current IRI system each semester to teach
distributed synchronous classes, we recognize several deficiencies in this
version:

(1) Platform-independence problem. The current IRI architecture is heavily
dependent on UNIX system calls and the X windowing environment.

(2) Heterogeneous network environment problems. The current IRI is de-
signed to be run over a private Intranet where QoS (Quality of Service)
is achieved by careful engineering of this controlled environment (both
in terms of network and platform resources).

(3) Late join problem. The design of the tool-sharing engine makes it
difficult for participants to join a session late or to rejoin after network
or platform failures. Many times, the only successful strategy for
dealing with system failures is to restart the entire session.

(4) Single shared view of all participants. It is often beneficial to divide
classes into groups for parts of a class session such that groups can
work independently. The current IRI only supports a single shared view
of all class activities.

(5) Scalability. IRI uses a reliable multicast protocol as the communication
architecture underlying the tool-sharing engine; it proved to be not
truly scalable both in terms of number of users and amount of traffic
generated by such heavy uses as downloading large image files in a
browser.

2 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

The limitations of the current IRI system can be summarized as homoge-
neous platform, homogeneous network, homogeneous start time, and homo-
geneous room view. The move to a heterogeneous environment requires
solutions to the following problems:

—Collaboration engine with multiple-platform-tool-source, platform-inde-
pendent delivery. These allow sharing of computer tools that exist in
different hardware platforms by all participants in the session. In
particular, the new version of IRI will have to make available the rich set
of applications running on Windows 9X/NT/2000 environments.

—Scalable semireliable communications. IRI currently uses RMP [Whetten
et al. 1994] for reliable multicast communications. While important in
the current success of IRI, RMP is limited by the slowest client and
requires careful tuning for different network configurations. In IRI-h we
use unreliable multicast at the core with our own mechanisms for
enforcing reliability. We believe that semireliable multicast is the key to
achieving scalability in a heterogeneous environment.

—Shared multiprogram/multiwindow graphical user interface. In a learn-
ing environment it is important that the teacher focus the student’s
attention on the current topic being discussed. This means, among other
things, that the position and focus of the windows displayed on the
student’s workstation be coordinated with the instructor’s machine. In
the original IRI, students could rearrange their view of the shared
screen, but could resynchronize to the teacher’s view or be resynchro-
nized by the teacher. This mechanism was costly to implement and
subject to anomalous situations.

—Platform/environment management including late join. IRI-h can start
and stop a session with no student intervention. Students can arrive in
class late and the system will already be delivering information from the
active participants. In addition, a student can join an ongoing session at
any time and fully participate in that class. Upon termination of a
session, individual student notebooks and the session-recorded informa-
tion is formatted and made available on the IRI-h web site for access
outside the IRI-h environment.

—Delivery to the home user. IRI-h will include home users who access the
session over a regular Internet connection using the current generation
of high-speed at-home Internet connections.

—Virtual rooms. The class can be divided into groups by assigning each
group a virtual meeting room. Students can move from room to room and
join in different ongoing discussions.

—Situational awareness. Students, teachers, and technical engineers are
made aware of the current operating environment and are notified about
noteworthy changes or unusual situations.

Regarding network heterogeneity, we consider the following cases:

IRI-h, A Java-Based Distance Education System • 3

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

—Nonmulticast enabled nodes. In general, we can expect that nodes at the
typical home will connect over a route that does not support multicast
routing.

—Low-bandwidth nodes. Although most nodes participating in an IRI-h
session will be at sites with high-quality networks, some will be reached
over networks with low bandwidth.

—High-delay nodes. When nodes are at significant distances, say greater
than 140 km, then the impact on interactivity due to transmission delays
can be significant. While delivery of the session can tolerate rather
significant delays for passive participants, interactivity, in the form of
question asking or session presentation, will be impacted and will
require different management of the network resources.

Providing all of these services in a platform-independent version is not
easy. However, we have been experimenting with a platform-independent
implementation of selected services. Most of these experiments use the
Java programming environment [Sun Microsystems Java home page]; and
include the use of Java APIs for distributed systems development (Java
Shared Data Toolkit–JSDT[Sun Microsystems JSDT home page]); multime-
dia libraries (Java Media Framework–JMF [Sun Microsystems JMF home
page]); and GUI interface design (Java Foundation Classes–JFC). Overall,
initial results are encouraging.

As we complete the new implementation, we must ensure that we retain
the features, abilities, and performance characteristics that proved to be
most successful while solving the problems described in this article. Desir-
able features from the old IRI system include ease-of-use for students at all
levels of the technology curve and ease-of-interaction for students in
different locations.

The IRI-h prototype is implemented fully in Java, and has been tested on
PCs running the Windows operating systems (NT, 98, 2000) and on Unix
machines running the Solaris operating system. It implements tool-sharing
and has a simple interface adaptable to the various roles of an IRI-h
session participant: student, teacher, presenter, and monitor. The commu-
nication infrastructure utilizes a combination of reliable/semireliable/unre-
liable uni/multicasting. Video management is performed by a single click
and audio is basically hands-free. JMF is used for both capturing and
playing the audio and video of each participant. JMF uses RTP/RTCP
[Schulzrinne et al. 1996] to transmit the captured media. The following key
decisions were made in light of the expressed goals for IRI-h. Tool-sharing
is implemented using a lossless video encoding in conjunction with a
semireliable transport protocol. Due to the high resolution of many com-
puter applications, the tool-sharing engine allows control of delivered bit
rate ranging from 10Kb/s to 4Mb/s. At this time, tools are captured only at
a PC, although the PC runs an X server and thus can remotely run an X
application on a UNIX machine. The IRI presentation tool [Maly et al.
1997] is eliminated, and we use instead a class web site to store presentations

4 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

accessed in class through a browser. Students and teachers can also use
their own web sites for presenting their slides using the tool of their choice.
A major reliability problem in the current IRI is the lack of the late
join/leave feature. In IRI-h we support both; we have again made a tradeoff
between reliability and scalability by eliminating distributed servers that
maintain considerable state information about the classes and their sessions.
Class information is now only at one server (with a backup), and session
information is maintained only at one session manager server. IRI-h has
now been explicitly designed to work well for up to one hundred nodes.

3. NETWORK STRUCTURE

Figure 1 shows a mixed network layout as might occur in typical use of
IRI-h. As with the previous version of IRI, we expect the system to be used
in classrooms equipped with a high-speed network connections to each
student’s workstation.

Figure 1 illustrates sites 1 and 2 that represent classrooms supported by
high-speed network connections and multicast to each class member’s
workstation. To support other class members, whose connections may have
limited capabilities, these sites include a gateway capable of providing
appropriately modified services. These can include unicasting to multicast
disabled sites such as site 3, where a local gateway can distribute packets
to participants; translation of video formats, and reduction of bandwidths
to low-bandwidth connections.

4. SOFTWARE ARCHITECTURE

Figure 2 depicts the software architecture for IRI-h’s main components,
namely, SP (session participant, one per desktop), and SM (session man-
ager, one per class session). Both are multithreaded processes. SP connects

Multicast disabled
site

UDP tunnel

Gateway

High Speed
Network (Multicast)

Gateway

High Speed
Network (Multicast)

S1 S2

P1

Low
Bandwidth
with
multicast

Multicast

P3

High Delay
without
multicast

UDP tunnel

P2

Low
Bandwidth
without
multicast

Intranet

Multicast

G
S3

P4P5

P6P7
P8P9

UDP tunnel

Fig. 1. A typical IRI-h network structure.

IRI-h, A Java-Based Distance Education System • 5

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

to SM through a permanent TCP/IP connection [Postel et al. 1981], main-
tained for the lifetime of the session. Session participants run a set of
services that use shared resources that are allocated and managed through
the SM. The SM maintains a set of rooms, each room contains a set of
services, and each service has allocated resources. In addition, SM main-
tains the participant’s attributes, e.g., his current room. Currently, the
supported services are audio, video, presenter, annotation, pointer, and
sharing tool. For example, the resources required by the video service are a
group communication channel, a video observer, and a gateway server. The
resources required by the annotation service are a group communication
channel, a token, an annotation observer, and a gateway server. Resource
management by the session manager is performed through a two-phase
process. In the first phase, an allocating SP requests the startup of a
service in his current room and the allocation of its shared resources. In the
second phase, all participants within this room receive the information on
how to contact the service resource managers. For example, when the
session manager allocates a token, a token manager is created, and the (IP
address, port) pair for this token manager is returned to the participants.
SM sends any service information to the latecomers after they connect to it
and login.

4.1 SM Components

The log server logs messages from each IRI-h process participating in the
IRI-h session. Each process connects to the log server through a permanent

SM
Log Server

Group Communication

Gateway

Token Managers

SP

Audio Video

Sharing Tool

Annotation

Pointer

Rcv
Snd

SndSnd

RcvRcv

Gateway servers

TCP

Thread relationship

Service manager

Main Thread

Snd Sender

Rcv Receiver

Observers

Fig. 2. IRI-h software architecture.

6 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

TCP/IP connection (not shown in Figure 2). The TCP/IP connection is used
to transport messages to the log server. The messages are saved in an
archival file, or are output to a monitoring display. We also have an
automated start-up process that starts IRI-h sessions on a configurable or
predefined set of machines and users. Since the start-up process runs
before a session is running, messages are logged separately and are
viewable through the browser involved in starting a session. The concept is
to start IRI-h services on those machines that are known to be part of a
class, and then other students use the late-join feature to join an ongoing
class from their particular machines.

The group communication server allocates group communication chan-
nels requested for services. Group communication can be reliable or unreli-
able. The current prototype implementation provides unreliable group
communication through IP multicast [Deering 1989]. Each service requir-
ing a group communication channel is guaranteed a unique (multicast IP
address, port) pair across all running IRI sessions (if any) through the
group communication server allocation policy. The server provides a map-
ping from textual group communication names such as “Room1-Video
Group” to communication entities such as a (multicast IP address, port)
pair. To support virtual rooms, each room is assigned a unique multicast
address. This multicast address is used by all services requiring group
communication channels within this room. It is formed as a function of the
session-manager machine’s IP address, session manager’s server port, and
the room number. Ports are allocated by subdividing a preset range of ports
among a maximum number of allowed session managers per machine.
Within each session, ports are divided among a maximum number of
allowed virtual rooms.

The gateway solves the heterogeneity problem manifested by varying
connectivity bandwidths available to participants. The gateway detects the
multicast ability of a session participant by performing a simple multicast
test with this participant. If the participant is multicast-disabled, tunnel-
ing services are provided through the gateway to deliver any multicast data
streams. In addition, the gateway provides for adaptive content delivery for
participants to meet their connectivity bandwidth constraints. An example
is a gateway server for a video service adapting the video stream frame rate
from 15 frames/second to 5 frames/second. The gateway plays a crucial role
in making IRI-h available to home users with limited connectivity band-
width. Note that, for simplicity, the gateway component is illustrated in
Figure 2 as a thread within the session manager. For bandwidth and
physical network connectivity issues, the gateway may be running on an
independent machine, other than the session manager machine. Tunneling
services and adaptive content delivery are not implemented in the current
prototype and are subjects for ongoing research.

Service observers provide recording capabilities to the IRI-h session.
Several services that need to be recorded include audio, video, whiteboard,
and tool-sharing, among others. Service observers act as passive receivers
to any data stream generated by a service, and save these data streams for

IRI-h, A Java-Based Distance Education System • 7

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

later playback. Recording and playback of generated data streams is an
ongoing effort, and is not part of the current prototype implementation.

5. IRI-h PROTOTYPE IMPLEMENTATION

As mentioned previously, an IRI-h session is composed of a session man-
ager, SM, and a set of session participants, SPs. The SM is a server that
has to be running before any SP can join a session, and acts as a
coordinator between all SPs. SPs running on distributed machines initiate
the connection with SM. An SP GUI gives a participant access to a set of
shared tools (services) that allow collaborative work between all SPs. The
available tools are audio, video, annotation, pointer, note-taking, and
tool-sharing engine. The following sections present various session start-up
scenarios, the SP desktop GUI, and start-up capabilities for SM and SP.

5.1 Session Start-up Scenarios

An IRI-h session can be started through an individual join mechanism, or
through an automated start-up procedure. Figure 3 illustrates the different
components involved in the start-up procedure. For example, the SM
running on machine H and the SP running on machine G are started by an
individual using command-line start-up. The SP running on machine B is
started with the help of a “directory server” running on machine D, while
SM running on machine F and the SP running on machine E are started by
an automatic start-up procedure.

The “directory server” always runs on a well-known machine and port,
and all SMs register themselves, providing their machine names and ports.
The “SP start-up” module contacts the “directory server” querying the

SP Startup

B

SP
Startup Applet

A

G

SP

E

SP
HA

SM: session manager
SP: session participant
HA: host ambassador
X Y: X initiates protocol with Y
X Y: X spawns Y

 : server

F

HA SM

H

SM

D

Directory Server

C

Java Server

Fig. 3. Various IRI-h session start-up scenarios.

8 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

current registered sessions and retrieves the machine name and port of the
SM for the class the user wants to join and then spawns an SP.

An administrator can configure and run a session through a Java applet
interface, “startup applet” on machine A. The applet allows the administra-
tor to choose a class configuration file, a machine to run the session
manager SM, and a set of machines that will participate in the session SPs.
The applet contacts a “Java server” (running on machine C), and passes all
session parameters. The “Java server” triggers an automatic start-up
procedure that performs the following:

(1) Contacts HA (host ambassador) on the session manager machine,
requesting to run SM and passing all session configuration files.

(2) Waits for an acknowledgment that SM is ready. The SM sends the
acknowledgment message after reading all the configuration files, and
just before waiting for participants to connect to it. The acknowledg-
ment message contains the SM server port.

(3) In parallel, contacts all HAs on all participating machines, requesting
to run an SP, passing it the SM machine name and server port.

The “host ambassador,” HA, is an IRI-h agent that facilitates remote
invocation of components. The HA is run on dedicated classroom machines,
or the participants can choose to run this server (service) on their ma-
chines, so they are notified when classes begin to allow SP to run automat-
ically. The SM, when started, registers his/her machine name and port with
the “directory server” to help users join current sessions after start-up.

5.2 IRI-h Desktop

An SP has two views available through the IRI-h desktop, a private view
and a shared view. The shared view is a consistent view across all
participants. All changes to the shared view by one participant are propa-
gated to other participants. A participant needs to provide his/her login
name and password before receiving the shared view and actually partici-
pating in the session. Before login he/she is given access to a private panel
that provides a display of a feedback window, as shown in Figure 4. The
feedback window illustrates members who are logged-in and some informa-
tion about each SP. An SP desktop is shown in Figure 5. The top bar
contains buttons for token-controlled tools such as presenter, pointer, and
annotation. The bottom bar contains a fixed set of buttons for controlling
audio and video and a dynamic set of buttons for controlling annotation,
pointer, and a sharing tool engine. The shared view consists of any received
video windows, annotations, and shared tools. Figure 5 depicts the SP
receiving two video streams, identified by the sender’s machine name.

The current presenter controls the layout of the shared view. The
presenter is a token controlled tool, with the name of the current token
holder appearing on the button. Any participant is allowed to grab the
presenter token by pressing that button, and can arrange the shared view

IRI-h, A Java-Based Distance Education System • 9

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

layout. There are two more token-controlled tools, namely annotation and
pointer that allow their token holders to annotate or point to any location
in the shared view. Referring to Figure 5, the shared view is annotated by
drawing a circle and an arrow. The annotation tool utilities (draw, erase,
and write) appear for its token holder on the bottom bar, as shown in
Figure 5.

Due to bandwidth limitations and shared view real-estate constraints,
the shared view can hold a maximum of 3 video windows. When the
maximum limit is reached, a student wishing to transmit his/her video
preempts one of the existing student video sources. The preempted video
source is instructed by SM to stop transmitting the student’s video stream.
The presenter cannot be preempted if transmitting his/her own video.

Members capable of sharing tools will have a button for the sharing tool
engine, allowing them to start sharing any tool running on their machines.
Figure 5 shows a participant sharing a Netscape. Every shared application
is token-controlled, and any participant can grab that token to control its
actions, such as browsing in Netscape or flipping the slides in a PowerPoint
presentation.

Each dedicated classroom machine belongs to an IRI-h site. Normally
during an IRI-h session, a site contains a machine that acts as an audio
server, playing audio streams received from other session sites. If the site
is not in the site-machine list, the default site of a participant is his/her IP
address. An SP can optionally be configured as a site audio server or as no
audio receiver at all. The default audio receiver behavior is to run a local
audio receiver, in which case all received audio streams are played (except
his/her own audio stream).

The whole class can meet in one virtual room or it can be divided further
into smaller groups. Each group meets in an individual virtual room, with

Private panelLogin box Class name and
semester

Fig. 4. A session participant GUI before login showing the class monitor in the private panel.

10 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

the ability to move between rooms. The virtual room paradigm is adopted
to allow for IRI-h to be used by simultaneous discussion or study groups.

The only required parameter in order to run an SP is the SM (machine
name, port) pair, which is provided by the automatic start-up procedure,
the directory server, or, assuming the member knows it through some other
means, email notification.

6. PRELIMINARY PERFORMANCE RESULTS

IRI-h was designed for both heterogeneity and scalability. In this section
we report on the performance of the current prototype. These results are
reported for each of the major services (audio, video, and tool-sharing)
separately in order to demonstrate the demands each makes on the
network and platform resources.

Audio. Audio bandwidth requirements are modest, on the order of 8 kbps
per audio channel. In addition, because sound cards support the transmit-
ted audio encoding, little CPU power is consumed in capturing or audio
playback. Using JMF’s audio services should therefore scale well, which is
verified in our preliminary testing.

Video. Video bandwidth requirements are around 250kbps for 5 frames/
sec given a JPEG image size of 320x240. Thus, given the “normal” IRI-h

Annotation token holder
utilities

Token controlled
tools Private panel

Shared
view

Room cards

Audio control

Video control

Fig. 5. A session participant GUI showing the shared view.

IRI-h, A Java-Based Distance Education System • 11

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

video load of three video streams, the video bandwidth requirements would
be on the order of 750 Kbps.

Platform loads for handling video are tied to the availability of video-
compression hardware on the video cards. Here we have found difference in
the platforms due to the capabilities of video cards. Owing to its image
quality, we encode video using JPEG compression. Our Unix machines are
equipped with video cards that compress/decompress JPEG encoded video
streams, and thus do not require a lot of CPU power. However, on the PC
machines, we do not have JPEG encoders on video cards, and are thus
required to compress/decompress in software. This places a significant load
on the CPU. While we have H263 encoders available for the PC, we felt the
quality of the transmitted video precluded their general use.

Tool-sharing. The performance of the sharing tool – IPV (interactive
program video) depends on the following activities: (1) capture images of
the windows in the application being shared; (2) compare these images with
previous images to see if the image has changed (for removing temporal
redundancy); (3) compress the image; (4) transfer; (5) decompress; (6)
display images on the client machine. Extensive studies were performed
during the development of this protocol, and have been reported elsewhere
[Gonzalez 2000]. In these studies two compression algorithms (JPEG and
PNG—a public domain GIF-like algorithm) and two image styles (photo of
two boys in the woods 388x566 pixels), and a Microsoft Word document
containing plain text (680x580 pixels) were used. Capture time is a func-
tion of the image size only (measured around 220 msec for a 700x700 image
on a Unix machine). Comparison time is between 300 and 500 msec.
Compression time is a function of the compression algorithm, and ranges
from approximately 1000 to 3000 msec, since this is performed in software.
Transmission time depends on image type and ranges from 20msec for the
text images to 350 msec for picture images (using PNG). On the receiver’s
side, performance is dominated by the decompression time that is around
500 msec. Due to the the large size of the images, IPV has been provided
with a rate control feature that limits the bandwidth requirements re-
quested by the originating machine.

7. UNRESOLVED ISSUES

Figure 2 depicts the software architecture of the IRI-h system’s building
blocks. However, several issues still need to be addressed, e.g., interstream
synchronization and gateway functionality. The following sections present
our vision and preliminary solutions for these problems.

7.1 Interstream Synchronization

A presenter in the IRI-h session might be transmitting his/her video and
speaking while sharing a slide in a browser. Meanwhile, he/she is also
pointing at a certain location in the browser window using the pointer
service or annotating the slide using the annotation service. This scenario
entails the presenter sending a video stream, audio stream, sharing a tool

12 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

stream and a pointer motion stream, or sending an annotation tool stream
to the other participants. At the receiver participant, these streams may be
received out of synch, due to differences in stream characteristics, size of
data packets, and network delays. At the receiver side, an interstream
synchronization protocol [Stoica et al. 1997] is required to maintain the
timing relationships across the streams received. Participants connected to
the IRI-h session through a gateway encounter the same problem. The
gateway might transcode a video stream into another video format more
suitable for a limited bandwidth connection, introducing an extra delay and
aggravating the out-of-synch problem.

7.2 Gateway Components and Functionality

In terms of network bandwidth consumption, IRI-h services can be classi-
fied into lightweight (pointer and annotation) and heavyweight (video,
tool-sharing, and audio) services. Lightweight services may only require a
tunneling gateway server bridging the multicast gap between multicast-
able IRI-h sites and multicast-disabled IRI-h participants. A received
multicast packet is encapsulated in a unicast packet and forwarded to each
gateway participant. No knowledge or processing of data stream content is
required. Hence, such services require a generic tunneling gateway server.
Heavyweight services might require a gateway server that performs tun-
neling, and/or data rate limiting and/or transcoding. Transcoding can be
used for video streams, as an option to lower the bandwidth requirements
of the video stream, e.g., transcoding from JPEG to H.261 [Amir et al.
1995]. Heavyweight services require specialized gateway servers geared
towards the characteristics of the generated data streams. These gateway
servers use their knowledge of the received data stream content to accom-
plish the gateway function. A number of issues need to be investigated to
efficiently perform such gateway functionality.

—Can limits on the data rate be performed through a buffering approach at
the gateway and playback at a lower data rate to gateway-serviced
participants? Will the source of the data stream need to be notified to
“slow down” in case the gateway is running out of buffer space?

—What is the bandwidth-allocation strategy for data streams originating
from the gateway towards the gateway-serviced participants? Amir et al.
[1997] introduced a receiver-driven bandwidth adaptation strategy for
such gateways. Meanwhile, Youssef et al. [1998] suggested a quality-of-
session control layer for interactive multimedia sessions.

—Is the transcoding process required, or can limiting the data rate by itself
perform the required task of adapting the incoming data stream to lower
bandwidth requirements?

8. CONCLUSIONS

Although the current version of IRI is by all measures a success, we
recognize that extending its reach to a wider audience will require funda-
mental changes in the way IRI services are offered and managed. We

IRI-h, A Java-Based Distance Education System • 13

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

believe a key feature of the new version of IRI is its heterogeneity:
heterogeneous delivery platforms, heterogeneous network environments,
and heterogeneous arrival and departure times. We have presented a
software architecture for achieving these goals and described a prototype
implementation in Java that supports audio, video, application-sharing,
annotation in a shared view and note taking, and situational awareness in
a private view. At the time of this writing we have a complete base version
of IRI-h that solves the first four problems listed at the beginning of this
article. We have shown and tested the system on a variety of platforms
simultaneously, and done initial scaling experiments with close to 50 nodes
with no discernible performance degradation while sharing heavy tools
among all users. Late join and leave were solved completely, and the
reliability of the system has improved dramatically. Situational awareness
has been addressed only with regard to participants who know the perfor-
mance aspects of the system; we have not yet addressed the issue of
providing learning context to all beyond the services already provided. The
issue of virtual rooms will mostly be a performance-tuning, technical
problem, although it should greatly increase the learning paradigm possi-
bilities. The one really significant problem we need to address is that of the
gateway for heavyweight services and synchronous presentation of ser-
vices. Not all of the intended features have been implemented; but from our
experience to date, we believe IRI-h will be more scalable and more robust,
with better quality of service to a wider range of participants, than is
possible in the current IRI system.

REFERENCES

AMIR, E., MCCANNE, S., AND ZHANG, H. 1995. An application level video gateway. In
Proceedings of the 3rd International Conference on Multimedia (Multimedia ’95, San
Francisco, CA, Nov. 5–9), P. Zellweger, Chair. ACM Press, New York, NY, 255–265.

AMIR, E., MCCANNE, S., AND KATZ, R. 1997. Receiver-driven bandwidth adaptation for
light-weight sessions. In Proceedings of the Conference on Multimedia (Seattle, WA, Nov.
9–13), E. P. Glinert, M. S. Johnson, J. Foley, and J. Hollan, Chairs. ACM Press, New York,
NY, 415–426.

DEERING, S. 1989. Host extensions for IP multicasting. RFC 1112. Internet Engineering Task
Force.

GONZALEZ, A. J. 2000. A Semantics-based middleware for collaborative multimedia
applications. Ph.D. Dissertation. Old Dominion University, Norfolk, VA.

MALY, K. ET AL. 2000. IRI-h home page. http://www.cs.odu.edu/˜iri-h.
MALY, K., ABDEL-WAHAB, H., OVERSTREET, C. M., WILD, C., GUPTA, A., YOUSSEF, A., STOICA, E.,

AND AL-SHAER, E. 1997. Distance learning and training over ntranets. IEEE Internet
Comput. 1, 1 (May/June), 60–71.

POSTEL, J. 1981. Transmission control protocol. RFC 793. Internet Engineering Task Force.
SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JACOBSON, V. 1996. RTP: A transport

protocol for real-time applications. RFC 1889. Internet Engineering Task Force.
STOICA, E., ABDEL-WAHAB, H., AND MALY, K. 1997. Synchronization algorithms for the

playback of multiple distributed streams. In Proceedings of the Fourth International
Conference on Multimedia Modeling. 143–158.

SUN MICROSYSTEMS. 2000. Sun’s Java home page. http://java.sun.com.
SUN MICROSYSTEMS. 2000. Sun’s Java media framework (JMF) home page.

http://java.sun.com/products/java-media/jmf/index.html.

14 • K. Maly et al.

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

SUN MICROSYSTEMS. 2000. Sun’s Java shared data toolkit (JSDT) home page.
http://java.sun.com/products/java-media/jsdt/index.html.

YOUSSEF, A., ABDEL-WAHAB, H., AND MALY, K. 1998. The software architecture of a distributed
quality of session control layer. In Proceedings of the Seventh IEEE Symposium on High
Performance Distributed Computing (Chicago, IL). IEEE Computer Society Press, Los
Alamitos, CA.

WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. 1995. A high performance totally ordered
multicast protocol. In Theory and Practice in Distributed Systems, K. Birman, F. Mattern,
and A. Schiper, Eds. Springer-Verlag, Berlin, Germany, 33–57.

Received: August 2000; revised: October 2000; accepted: November 2000

IRI-h, A Java-Based Distance Education System • 15

ACM Journal of Educational Resources in Computing, Vol. 1, No. 1, Spring 2001.

