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Abstract

This paper studies LTI one-degree-of-freedom networked control architectures built around LTI
SISO plants. The feedback path comprises an unreliable channel that drops data in an i.i.d. fashion.
We extend known results to show that there exists a second order moments equivalence between
the situation examined and an auxiliary feedback loop where the unreliable channel has been
replaced by an additive i.i.d. noise channel that has an equality signal-to-noise ratio constraint. We
then use these insights to design optimal controllers. We also establish a necessary and sufficient
condition on the successful transmission probability that allows for the design of a controller
that guarantees MSS in the considered setup. Since our proposal does not require packet arrival
acknowledgements, our results give necessary and sufficient conditions for MSS in an output-
feedback control architecture with UDP-like protocols.

1 Introduction

Practical control systems often employ non-transparent communication links and, as a consequence,
communication constraints arise [1]. Control systems where this happens are called networked control
systems (NCSs). In the NCS framework, key questions relate to the interplay between communication
constraints and the performance and stability of the resulting closed loop. Key communication con-
straints are bit-rate limitations (which lead to quantization issues), random delays and data-dropouts.
A framework for the unified treatment of all these issues does not yet exists, but substantial progress
has been made in the study of subproblems. A good overview of control problems subject to data-rate
limitations is provided in [2], methodologies to deal with random delays are surveyed in [3], whereas
data-loss is studied in, e.g., [4–6].

This paper focuses on NCSs where data-dropouts are the only source of communication constraints.
In the simplest model of such a situation, uncorrupted data is received at the receiving end with a
given probability that is assumed constant over time [1, 4, 5, 7]. Other cases have been treated in,
e.g., [8–10]. Early work in this area includes [11] and [12], where elementary dropout compensation
schemes were studied. The actual design of dropout compensators has been addressed in [13]. The
key conclusion in [13] is that, for a specific NCS architecture subject to data-dropouts, the resulting
switched system (more precisely, a Markov jump linear system (MJLS)) is equivalent to a linear system
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with an external noise source having a variance that is proportional to the variance of another signal
within the loop. This result is then used to design the dropout compensator so as to minimize the
plant output variance.

There exist situations where the performance gains arising from dropout compensation may be
not sufficient. In these cases, a complete controller re-design is needed. Such an approach has been
followed in, e.g., [5], where MJLS theory has been used to synthesize controllers that minimize an H∞
functional in the presence of i.i.d. data-dropouts (see also [14] for some extensions and related results).
Another relevant work is [7]. In that work, the author studies a general MIMO control problem where
communication takes place over a so-called fading network. Section 8 in [7] particularizes the results
to a case that employs a single unreliable channel that drops data in an i.i.d. fashion. In this case,
and assuming a single input plant whose state is noiselessly measured, it is shown in [7] that an LTI
controller that achieves mean square stability (MSS) can be found, if and only if the probability of
successful transmission is greater than a function of the product of the unstable plant poles. However,
no performance questions are addressed in [7].

Control over unreliable channels has also been addressed from the perspective of classic LQG theory
in, e.g., [15] and [4]. The work [15] was one of the first ones to point out that there exist control problems
where fundamental differences arise depending on whether or not there exist acknowledgements that
testify successful transmissions. If such acknowledgements are available (TCP-like protocols), then
the classical separation principle holds, whilst no separation holds when no acknowledgements are
available (UDP-like protocols) [4]. It has also been shown in [15] and [4] that, consistent with the
results in [7], there exists a region in the plane of successful transmission probabilities within which
MSS can be guaranteed. As expected, these regions are protocol dependant. Another conclusion in [4]
is that LTI control policies are suboptimal when dealing with data-dropouts. Indeed, in the UDP-like
protocol case, optimal control laws are non-linear in general and they do not seem to admit an usable
characterization [4]. This motivated the study of optimal LTI controllers pursued in [16]. Related
results can be found in [6, 17]. In that work, a specific coding and control architecture is proposed
(which is more general than those considered in [4, 15, 16]) and it is shown to be optimal irrespective
of the actual channel dropout profile.

In this paper we consider a standard LTI one-degree-of-freedom (one-dof) architecture built around
an LTI SISO plant, where the feedback path comprises an unreliable channel that drops data in an
i.i.d. fashion. We adapt and slightly extend the results in [13] to this architecture and show that there
exists a second order moments equivalence between the considered NCS and an auxiliary control system
where the unreliable channel has been replaced by an additive i.i.d. noise channel that has an equality
signal-to-noise ratio (SNR) constraint. We then use these insights to obtain optimal controller designs,
and also to establish necessary and sufficient conditions on the successful transmission probability that
guarantees the existence of a controller that achieves MSS.

The results in this paper go beyond the results in [13], where no detailed study of the interplay
between MSS and dropout probability is performed. We also extend the results in [7], where no noise
sources or disturbances are considered, and where only MSS is studied. On the other hand, since our
proposal does not use packet arrival acknowledgements, our results give necessary and sufficient con-
ditions for the existence of LTI controllers that achieve MSS in an output-feedback UDP-like protocol
based networked architecture, whereas the available results (see [4,15]) give only sufficient or necessary
conditions depending on the plant structure.1

The remainder of this paper is organized as follows: Section 2 presents the notation used throughout
1These issues are discussed in detail in Section 5.



the paper. Section 3 makes our working assumptions explicit and states the problem of interest.
Section 4 shows that the considered NCS architecture is equivalent (in the sense indicated above) to
a standard LTI feedback loop with an equality SNR constraint. Section 5 characterizes the successful
transmission probabilities that guarantee the existence of controllers that achieve MSS, and Section 6
focuses on performance related questions. Section 7 presents an example. Section 8 draws conclusions.

2 Notation

We define N0 , {0, 1, · · · } and R+
0 , {x ∈ R : 0 ≤ x < ∞}. P{·} denotes probability, E {·} denotes the

expectation operator, vec {·} denotes the column stacking operator, and ⊗ is the Kronecker product
(see, e.g., [18, 19]). Given any scalar x, |x| denotes its magnitude and x̄ its complex conjugate. We
use z as both the argument of the z-transform and as the forward shift operator, where the meaning
is clear from the context.

The set of all real rational discrete-time transfer functions is denoted by R. We define the following
subsets of R: Rp contains all proper transfer functions, Rsp contains all strictly proper transfer
functions, RH∞ contains all the stable and proper transfer functions, U∞ contains all square transfer
functions inRH∞ with inverses inRH∞, RH2 contains all stable and strictly proper transfer functions,
and RH⊥2 contains all transfer functions that have no poles in {z ∈ C : |z| ≤ 1}. Any A(z) ∈ R with
no poles on the unit circle belongs to L2. For such A(z) we define the 2−norm via (see, e.g., [20, 21])

||A(z)||22 , trace
{

1
2π

∫ π

−π

A(ejω)A(ejω)Hdω

}
. (1)

Any A(z) ∈ R with no poles on the unit circle can be written as

A(z) = [A(z)]H⊥2 + [A(z)]H2
, (2)

where [A(z)]H⊥2 ∈ RH⊥2 contains the strictly unstable, constant and non-causal parts of A(z), and
[A(z)]H2

∈ RH2 corresponds to the stable and strictly proper part of A(z). Sometimes, we write
{A(z)}|z=0 instead of A(0). A(z)∼ is a shorthand for A(z−1)T .

Unless otherwise stated, random processes are always scalar and defined for k ∈ N0. We abbreviate
{x(k)}k∈N0 , x(k) ∈ R, by x. The variance, at time instant k, of a process x is denoted via σ2

x(k).
Similarly, if x is a random variable, then σ2

x denotes its variance. We define σ2
x , limk→∞ σ2

x(k),
provided the limit exists. If x is a wide sense stationary (wss) (asymptotically wss) process, then
Sx(ejω) denotes its (stationary) power spectral density (PSD) and Ωx(z) denotes any spectral factor
of Sx(ejω), i.e.,

˛̨
Ωx(ejω)

˛̨2, Sx(ejω). We say that a random variable (process) is a second order one if
and only if it has finite mean and finite second order moments (for all time instants k ∈ N0 and also
when k →∞).

3 Problem Definition

As foreshadowed in the introduction, this paper focuses on a NCS architecture where an LTI one-dof
controller has to be designed to optimize performance in a closed loop that uses an unreliable channel
in the feedback path. The situation of interest is depicted in Figure 1, where G(z) is the plant transfer
function, C(z) is the controller, r is a reference signal, d models plant output disturbances, y is the
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Figure 1: One degree of freedom control loop with feedback over unreliable channel.

plant output, and the channel is an analog erasure channel. That is, the channel input v and the
channel output w are related via

w(k) , (1− dr(k))v(k), ∀k ∈ N0, ∀v(k) ∈ R, (3)

where dr is a process that models data dropouts and that is such that dr(k) ∈ {0, 1} ∀k ∈ N0.
In this paper we work under the following assumptions:

Assumption 1

(a) The process dr is an independent sequence of i.i.d. Bernoulli random variables such that P{dr(k) =
1} = 1− p for all k ∈ N0.

(b) The plant transfer function G(z) belongs to Rsp, is SISO, non-zero, has no zeros or poles on the
unit circle, and has a stabilizable and detectable underlying realization.

(c) The signals r and d are second order jointly independent and mutually uncorrelated wss scalar
processes with rational PSDs. At least one signal, r or d, is non-zero. If r or d are non-zero, then
they admit spectral factors in U∞.

(d) The initial states of both the plant and controller are jointly second order random variables. ¤¤

According to Assumption 1, the channel in Figure 1 drops data in an i.i.d. fashion. More general
channel models have been considered in, e.g., [8]. Assuming that the plant is strictly proper guarantees
that the feedback loop in Figure 1 is well-posed for all causal controllers. We focus on SISO plants for
simplicity. It may be possible to extend the results in this paper to the MIMO case. The remaining
assumptions on G(z) are either standard or non-essential to our results. (They have been made to
maintain a straightforward presentation; see [?] for more general cases.) The assumptions on r and
d are standard, except for the fact that we do not allow both r and d to be zero signals for brevity.
Finally, the assumptions on the plant and controller initial states hold for most cases of interest and
are also standard.

In this paper we will use the following notion of stability (see also, e.g., [7, 22,23]):

Definition 1 (Mean square stability) Consider a system described by x(k + 1) = f(x(k), w(k)),
where k ∈ N0, f : Rn × Rm × R → Rn, x(k) ∈ Rn is the system state at time instant k, x(0) = xo,
where xo is a second order random variable, and the input w is a second order wss process independent



of xo. We say that the system is mean square stable (MSS) if and only if there exist finite µ ∈ Rn and
finite M ∈ Rn×n, M ≥ 0, such that

lim
k→∞

E {x(k)} = µ, lim
k→∞

E
{
x(k)x(k)T

}
= M,

regardless of the initial state xo. ¤¤

We note that MSS reduces to internal stability (in the standard deterministic sense defined in,
e.g., [24]) when the mapping f(x, w) = Ax + Bw.

We define the tracking error e via

e , r − y, (4)

and use its stationary variance σ2
e as performance measure.

With the previous definitions, we are now in a position to state the problem of interest in this
paper:

Problem 1 Consider the networked control situation depicted in Figure 1 and suppose that Assump-
tion 1 holds. For any successful transmission probability p ∈ (0, 1), find (or prove the problems unfea-
sible)

[
σ2

e

]
p

, inf
C(z)∈Sp

σ2
e , Cp(z) , arg inf

C(z)∈Sp

σ2
e . (5)

where Sp , {C(z) ∈ Rp : the loop in Figure 1 is MSS}. ¤¤

In Problem 1, we left the extreme cases p ∈ {0, 1} aside. These can be studied using standard
control theoretic ideas and, as such, are not of interest here.

The remainder of this paper focuses on solving Problem 1. To that end, we will first extend known
results to show that Problem 1 is equivalent to a problem of control system design with an equality SNR
constraint. Once this equivalence is revealed, we will adapt results of our recent conference paper [25]
to give a characterization of the solution to Problem 1.

4 Preliminary Results

Consider an auxiliary situation where the analog erasure channel in Figure 1 is replaced by an additive
noise channel plus a gain which is equal to the successful transmission probability p (see Figure 2). In
Figure 2, q is an exogenous noise source satisfying the following:

Assumption 2 (Additive noise channel) The signal q is an independent sequence of i.i.d. random
variables having zero mean and a variance σ2

q that satisfies

σ2
q = p(1− p)σ2

v , (6)

provided the stationary variance of v exists and is finite. ¤¤
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Figure 2: LTI system with feedback over additive i.i.d. noise channel, plus a gain.

We note that, for p ∈ (0, 1), (6) can be written as

γ , σ2
v̄

σ2
q

=
p

1− p
, (7)

where v̄ , p v (see Figure 2). The ratio γ is the SNR of the additive noise channel in the feedback
path of Figure 2.

The next theorem establishes a relationship between the feedback loops of Figures 1 and 2. (This
result is implicitly stated in [13] for a different architecture.)

Theorem 1 (Equivalence) Consider the feedback loops in Figures 1 and 2. If p ∈ (0, 1), and As-
sumptions 1 and 2 hold, then:

1. If the feedback system in Figure 1 is MSS and the feedback system in Figure 2 is internally stable,
then the stationary PSDs of e and of all the signals in the loops are the same in both situations.

2. The networked system in Figure 1 is MSS if and only if the feedback loop in Figure 2 is asymp-
totically stable and

p

1− p
> ||Tp(z)||22 , (8)

where Tp(z) is the transfer function from q to v̄ in Figure 2, namely

Tp(z) , (1− pG(z)C(z))−1
pG(z)C(z). (9)

Moreover, (8) is equivalent to σ2
q ∈ R+

0 .

Proof: The proof goes along the same lines as the proofs in [13] and is omitted due to space
constraints. A complete proof valid in more general settings can be found in [?]. ¤¤¤

We conclude from Theorem 1 that spectral and MSS-related properties of the NCS in Figure 1 can
be studied by means of focusing on the LTI system in Figure 2, where the unreliable channel has been
replaced by an additive i.i.d. noise channel, having gain p and an equality SNR constraint given by
(7). This property is central for the remainder of this paper.
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Figure 3: Equivalent re-writing of Figure 2.

We end this section by making explicit a few consequences of Theorem 1. To that end, we write
the feedback loop of Figure 2 as in Figure 3, where P (z) is such that




e
v̄
m


 =




Pe11(z) Pe12(z)

Pv̄11(z) Pv̄12(z)

P21(z) P22(z)




[
d̄
u

]
, (10)

d̄ ,
[
r d q

]
, and

Pe11(z) ,
[
1 −1 0

]
, Pe12(z) , −G(z), (11a)

Pv̄11(z) ,
[
0 p 0

]
, Pv̄12(z) , pG(z), (11b)

P21(z) ,
[
1 −p −1

]
, P22(z) , −pG(z). (11c)

Corollary 1 Consider the NCS in Figure 1, assume that p ∈ (0, 1) and that Assumption 1 holds.
Recall the definitions in (11) and choose X(z), Y (z), N(z) and D(z) in RH∞ such that X(z) and
D(z) are biproper, P22(z) = N(z)D(z)−1 and X(z)D(z)− Y (z)N(z) = 1. Then:

1. C(z) ∈ Sp if and only if p
1−p > ||Tp(z)||22 and

C(z) = (X(z)−Q(z)N(z))−1 (Y (z)−Q(z)D(z)) , (12)

where Q(z) ∈ RH∞ is a free parameter (the Youla parameter).

2. If C(z) ∈ Sp, then the stationary variances σ2
e and σ2

v̄ exist, are finite and satisfy

σ2
e = ||Td̄e(z)Ωd̄(z)||22 , (13a)

σ2
v̄ = ||Td̄v̄(z)Ωd̄(z)||22 , (13b)

where

Td̄e(z) , T o
d̄e(z)− Pe12(z)D(z)Q(z)D(z)P21(z), (14a)

Td̄v̄(z) , T o
d̄v̄(z)− Pv̄12(z)D(z)Q(z)D(z)P21(z), (14b)

T o
d̄e(z) , Pe11(z) + Pe12(z)D(z)Y (z)P21(z), (14c)

T o
d̄v̄(z) , Pv̄11(z) + Pv̄12(z)D(z)Y (z)P21(z), (14d)



and where Ωd̄(z) , diag {Ωr(z),Ωd(z), σq},

σ2
q =

||Trdv̄(z) diag {Ωr(z), Ωd(z)}||22
p

1−p − ||Tp(z)||22
(15)

and Trdv̄(z) denotes the transfer function from
[
r d

]T to v̄ in Figure 2.

Proof: Equations (13) and (14) follow immediately from Theorem 1, the well-known Youla
parametrization (see, e.g., [21]) and elementary stochastic process theory (see, e.g., [26]). Equation
(15) follows from solving (7) and (13b) for σ2

q . ¤¤¤

Remark 1 We note that the left hand side in (15) belongs to R+
0 whenever C(z) is as in (12) and (8)

is satisfied, i.e., whenever the NCS in Figure 1 is MSS. ¤¤

The expressions for σ2
e and σ2

v̄ provided in (13) are not explicit. Indeed, they have σq as a parameter,
which, in turn, can be obtained from (15). Writing σ2

e and σ2
v̄ as in (13), and keeping in mind that

(6) (or (7)) holds, has some advantages that we will exploit below. We also note that, since G(z) is
non-zero, both σ2

e and σ2
v̄ are strictly convex functions of Q(z) for every fixed σ2

q . In the sequel, it will
be convenient to make this fact explicit. To that end, we define the functionals

Jσ2
q
(Q(z)) , σ2

e , Rσ2
q
(Q(z)) , σ2

v̄ . (16)

Jσ2
q
(Q(z)) and Rσ2

q
(Q(z)) correspond to the stationary variances of e and v̄ as a function of Q(z) and

with σ2
q as a parameter, respectively.

5 Mean Square Stability

Before solving Problem 1, we will address the simpler problem of characterizing the successful trans-
mission probabilities p that guarantee that the set Sp is non-empty, i.e., that there exists a controller
C(z) such that the loop in Figure 1 is MSS. To that end, we define

∆G , η + δ, (17)

where (see also Equation (34) in [27])

η ,
nc∑

i=1

nc∑

j=1

ψiψ̄j

(cic̄j − 1)
,

ψi , (1− |ci|2)

ξp(ci)−

m−1∑

j=0

βjc
−j
i




nc∏

j=1
j 6=i

1− cic̄j

ci − cj
,

ξp(z) ,
np∏

i=1

1− zpi

z − pi
, βk ,

{
1
k!

dk

dzk
ξp(z)−1

}∣∣∣∣
z=0

,

δ ,
{

0 if m = 1,∑m−1
i=1 |βk|2 if m > 1,



m is the relative degree of G(z) and {c1, · · · , cnc} (resp. {p1, · · · , pnp}) denotes the set of NMP zeros
(resp. unstable poles) of G(z). It follows from the results in [27] that ∆G ≥ 0 and that ∆G = 0 if and
only if the plant has no NMP zeros and has relative degree one.

Theorem 2 (Minimal p for MSS) Consider the NCS of Figure 1 and suppose that Assumption 1
holds. If G(z) is unstable, then there exists a controller C(z) ∈ Rp such that MSS holds if and only if

p > pinf , 1− 1(∏np

i=1 |pi|2
)

+ ∆G

. (18)

Proof: We will start by showing the necessity of the condition on p. If C(z) is such that the
loop in Figure 2 is internally stable then, by Theorem 1 and Corollary 1, we have that

p

1− p
> ||Tp(z)||22
= ||1−D(z) (X(z) + N(z)Q(z))||22

≥
(

np∏

i=1

|pi|2
)
− 1 + ∆G, (19)

where the last equality follows from Theorem III.2 in [27]. Thus, (18) follows. On the other hand, if
(18) holds, then it suffices to pick C(z) as in (12) with

Q(z) = arg min
Q(z)∈RH∞

||1−D(z) (X(z) + N(z)Q(z))||22

to achieve internal stability in the loop of Figure 2 and guarantee that (8) holds (we note that since
Assumption 1 holds, Q(z) always exists; see also the proof of Theorem III.2 in [27]). Thus, Theorem 1
guarantees the MSS of the NCS in Figure 1 and the result follows. ¤¤¤

Remark 2 (Stable plants) If G(z) is stable, then there exists C(z) ∈ Rp such that the resulting loop
is MSS for any p ∈ [0, 1] (just choose C(z) = 0). Thus, pinf = 0 in those cases. ¤¤

Theorem 2 gives an explicit characterization of the minimal successful transmission probability that
guarantees the existence of a controller C(z) that renders the NCS of interest MSS. Our results state
that, as intuition suggests, plants that have unstable poles of large magnitude require more reliable
channels in order to be stabilized than those plants having unstable poles of moderate size. It is
also appreciated that, for the considered control architecture, not only unstable plant poles affect the
minimal admissible value for p, but also the plant NMP zeros and relative degree.

We note that, in the control architecture under study, the sending end does not exploit knowledge
of whether or not data arrives uncorrupted at the controller side. As such, the considered scheme can
be implemented using so-called UDP-like network protocols. In such cases, the results of Theorem 6.1
in [4] 2 give explicit necessary conditions on the dropout probabilities that guarantee MSS for the case
of plant models that have a square and invertible state-to-output matrix (“C” matrix). That condition
turns out to be also sufficient in the case of systems that, in addition, have a square and invertible
input-to-state matrix (“B” matrix; see also [15]). In the SISO case, having both a square input-to-state

2Note that equation (40) in Theorem 6.1 in [4] contains a typo that is corrected in the proof of that theorem.



and state-to-output matrix is tantamount to having a scalar plant model. Our results are consistent
with those reported in [4,15], but go beyond those results in that they provide necessary and sufficient
conditions that are valid for (almost) any SISO plant model when the control scheme is an LTI one-dof
one.

Our results also extend the results in Section 8 in [7]. In that work, the author gives conditions on
the successful transmission probability for LTI one-dof control architectures with perfect state feedback.
It turns out that, in that special case, (18) with ∆G = 0 is necessary and sufficient to be able to find
a state feedback law that guarantees MSS. Our results extend the framework in Section 8 of [7] to the
output feedback case and show that, in that case, not only the unstable plant poles limit the channel
reliability needed to achieve MSS.

6 Design for Performance

In this section we solve Problem 1. To that end, we use the results of Theorem 1 and focus on the
LTI system of Figure 2, where q satisfies Assumption 2. Provided the assumptions of Problem 1 are
satisfied, Theorem 1 and Corollary 1 allow one to conclude that

[
σ2

e

]
p

can be written as

[
σ2

e

]
p

= inf
Q(z)∈RH∞

σ2
q∈R+

0
γ= p

1−p

σ2
e , (20)

where γ is defined as before (see (7)). The first two constraints in the optimization problem in (20)
originate from MSS requirements. The third constraint, namely an equality SNR constraint, is a
consequence of the fact that the LTI system of Figure 2 models the networked situation of Figure 1 if
and only if (7) is satisfied.

In order to present our main result, we first note that (20) can be written in the equivalent form
[
σ2

e

]
p

= inf
σ2

q∈R+
0

inf
Q(z)∈RH∞

Rσ2
q
(Q(z))= p

1−p σ2
q

Jσ2
q
(Q(z)), (21)

where Jσ2
q

and Rσ2
q

were defined in (16). For every σ2
q ∈ R+

0 , the inner problem in (21) is a problem
of minimizing the variance σ2

e subject to an equality constraint on the variance σ2
v̄ . The Lagrangian

associated with this problem is given by

Lσ2
q ,ε(Q(z)) , εJσ2

q
(Q(z)) + (1− ε)Rσ2

q
(Q(z)), (22)

where ε ∈ [0, 1] is a multiplier.
We have the following result:

Lemma 1 (Lagrangian) Consider the NCS in Figure 2, assume that p ∈ (0, 1] and that Assumption 1



holds. Define

Aε(z) ,
[ √

ε T o
d̄e

(z)Ωd̄(z)√
1− ε T o

d̄v̄
(z)Ωd̄(z)

]
, (23)

Eε(z) ,
[ √

ε Pe12(z)D(z)√
1− ε Pv̄12(z)D(z)

]
, (24)

Av(z) , vec {Aε(z)} , (25)

Bv(z) , (D(z)P21(z)Ωd̄(z))T ⊗ Eε(z), (26)

where all symbols are as defined previously. Consider an inner-outer factorization of Bv(z) given by
Bv(z) = Bi(z)Bo(z), where Bi(z) is inner and Bo(z) is outer (see, e.g., [21, 28]). Then, for any
σ2

q ∈ R+
0 and ε ∈ [0, 1], the Youla parameter that minimizes Lσ2

q ,ε (see (22)) is given by

Qσ2
q ,ε(z) , arg min

Q(z)∈RH∞
Lσ2

q ,ε(Q(z))

= Bo(z)−1
( {

[Bi(z)∼Av(z)]H⊥2

}∣∣∣
z=0

+ [Bi(z)∼Av(z)]H2

)
. (27)

Proof: Using (14), properties of the 2−norm, properties of the Kronecker product, and recalling
that Q(z) is scalar, it is possible to write

Lσ2
q ,ε(Q(z)) = ||Aε(z)−Eε(z)Q(z)D(z)P21(z)Ωd̄(z)||22

= ||Av(z)−Bv(z)Q(z)||22 . (28)

Since Assumption 1 holds, it follows that Bv(z) has full column normal rank and, moreover, no zeros
on the unit circle. Thus, Bo(z) ∈ U∞ (see also [28]). Define the function

φ(z) ,
[

Bi(z)∼

I −Bi(z)Bi(z)∼

]
(29)

and note that φ(z)∼φ(z) = I. By using standard analyticH2 optimization techniques (see, e.g., [27,29]),
(28) can be written as

Lσ2
q ,ε(Q(z))

= ||φ(z) (Av(z)−Bv(z)Q(z))||22
= ||H(z)−Bo(z)Q(z)||22 + ||(I −Bi(z)Bi(z)∼)||22
=

∣∣∣
∣∣∣
{

[H(z)]H⊥2

}∣∣∣
z=0

+ [H(z)]H2
−Bo(z)Q(z)

∣∣∣
∣∣∣
2

2
+ α,

where α ∈ R+
0 is independent of Q(z), and H(z) , Bi(z)∼Av(z). The result is now immediate. ¤¤¤

The crucial point in calculating Qσ2
q ,ε(z) is the inner-outer factorization of Bv(z). This can be done

with the aid of the algorithms described in, e.g., [21, 28].
We are now ready to state the main result of this section:



Theorem 3 (Optimal performance) Consider the NCS of Figure 1, suppose that Assumption 1
holds and that p ∈ (pinf , 1). Define the set

Σ ,
{

σ2
q ∈ R+

0 : Rσ2
q
(Qσ2

q ,0(z)) ≤ σ2
q

p

1− p
≤ Rσ2

q
(Qσ2

q ,1(z))
}

, (30)

and the function f : Σ → [0, 1] implicitly defined via

p

1− p
σ2

q = Rσ2
q
(Qσ2

q ,f(σ2
q)(z)). (31)

Then:

1. The minimal stationary tracking error variance
[
σ2

e

]
p

is given by

[
σ2

e

]
p

= Jσ2
p
(Qσ2

p,f(σ2
p)(z)), (32)

where

σ2
p , arg min

σ2
q∈Σ

Jσ2
q
(Qσ2

q ,f(σ2
q)(z)). (33)

2. The optimal controller Cp(z) is given by (12) with Q(z) = Qσ2
p,f(σ2

p)(z).

Proof: The result follows immediately from Theorem 5 in our previous contribution documented
in [25]. (Note that our notation is slightly different in the present paper.) ¤¤¤

Remark 3 We note that Theorem 2 implies that Problem 1 is unfeasible for all p < pinf . ¤¤

Theorem 3 provides an analytic characterization of the minimal stationary tracking error variance
σ2

e that is achievable with a given successful transmission probability p. It also gives the associated
optimal controller Cp(z). Our results, although analytical, are not explicit since they require the
numeric calculation of σ2

p (see (33)). Nevertheless, they can be used as the basis of simple numerical
algorithms to approximate

[
σ2

e

]
p

and Cp(z). The following conceptual algorithm illustrates the idea:

Algorithm 1 (Finding
[
σ2

e

]
p
) For any fixed p ∈ (0, 1) proceed as follows:

• Step 1: Pick a grid G = {σ2
1 , · · · , σ2

n}, where σ2
i ∈ Σ ∀i ∈ {1, · · · , n}.

• Step 2: Find f(σ2
i ) for every σ2

i ∈ G.

• Step 3: Evaluate
[
σ2

e

]
i
, Jσ2

i
(Qσ2

i ,f(σ2
i )(z)) for every σ2

i ∈ G. Define i∗ as the index i associated to
the smallest

[
σ2

e

]
i
. Approximate

[
σ2

e

]
p

and Qσ2
p,f(σ2

p)(z) by
[
σ2

e

]
i∗ and Qσ2

i∗ ,f(σ2
i∗ )(z), respectively.

¤¤

We note that f(σ2
i ) can be found using standard bisection or any other line search algorithm.

Algorithm 1 can be much improved if the grid G is iteratively modified (as in, e.g., the so-called
golden section optimization procedure; see [30]), and Steps 2 and 3 are replaced by, e.g., an LMI
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Figure 4: Best achievable performance as a function of the successful transmission probability p (hor-
izontal line is at

[
σ2

e

]
p

= Dinf = 0.04 and vertical one is at p = pinf = 0.75).

based optimization procedure that solves the inner problem in (21)3 and, as a consequence, gives an
immediate characterization of Jσ2

i
(Qσ2

i ,f(σ2
i )(z)) for every σ2

i (see, e.g., [31]).
It should be clear that the performance achieved by the controller that our methodology suggests,

is only optimal within the class of considered control architectures, i.e., LTI one-dof ones. Obviously,
better performance may be attained if one considers time varying controllers or more complex ar-
chitectures as proposed in, e.g., [4, 5]. Indeed, it has been shown in [4] that optimal control policies
for control problems that involve unreliable channels are, in general, time varying and, in the case of
employing UDP-like protocols (as in our case), non-linear. Our approach, although suboptimal, may
allow one to attain acceptable performance levels with a simple LTI architecture.

The work [16] also provides characterizations of LTI controllers for networked situations that are
subject to data loss. Our results, as opposed to those in [16], are expressed in simple terms and rely
only on standard optimization ideas. (We note, however, that the work in [16] focuses on architectures
with two unreliable channels [one for the controller-to-actuator link, and one for the sensor-to-controller
link]. It would be interesting to extend the ideas in this paper to the situation studied in [16]. We
leave this for future research.)

7 An Example

This section provides an example to illustrate the results in this paper. Assume that the plant model
is given by

G(z) =
z − 0.8
z(z − 2)

, (34)

that d = 0 and that the reference r has a spectral factor given by Ωr(z) = 0.1z(z − 0.9)−1.

3To do so, one can proceed as in the proof of Theorem 3. That is, one can change the equality constraint in (21) by
an inequality one, solve the associated convex problem and, upon noting that at the optimum of the new problem the
constraint is active, readily obtain a solution to the original problem.



The results of Section 5 imply that one will be able to find a controller C(z) that renders the
networked control loop MSS if and only if

p > pinf = 0.75. (35)

We will thus focus on successful transmission probabilities p ∈ (0.75, 1]. Using Theorem 3 and Algo-
rithm 1, we calculated the best achievable performance for such values of p. The results are presented
in Figure 4. As expected, the best achievable performance is lower bounded by the best non-networked
performance, i.e., by

Dinf , inf
Q(z)∈RH∞

J0(Q(z)) = 0.04, (36)

for every p. We also see that σ2
e →∞ when p → pinf = 0.75, and that σ2

e → Dinf = 0.04 when p → 1
(see vertical and horizontal lines in Figure 4, respectively). This behavior is consistent with intuition,
and can be easily shown to be consistent with our results.

8 Conclusions

This paper has studied one-dof control loops for SISO LTI plants where the feedback path comprises an
unreliable channel. Focusing on LTI control architectures and i.i.d. data-dropouts, we showed that the
analysis and design of such NCSs can be carried out using standard LTI tools, and design procedures
tailored to SNR constrained feedback loops. We believe these insights to be of fundamental importance.
Future work should focus on extending the ideas of this paper to situations with multiple channels and
to the MIMO case. Extensions to situations that use TCP-like protocols have been explored in [?].
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